step response
Recently Published Documents


TOTAL DOCUMENTS

1159
(FIVE YEARS 211)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 6 (1) ◽  
pp. 47
Author(s):  
Weijia Zheng ◽  
Runquan Huang ◽  
Ying Luo ◽  
YangQuan Chen ◽  
Xiaohong Wang ◽  
...  

Considering the performance requirements in actual applications, a look-up table based fractional order composite control scheme for the permanent magnet synchronous motor speed servo system is proposed. Firstly, an extended state observer based compensation scheme was adopted to suppress the motor parametric uncertainties and convert the speed servo plant into a double-integrator model. Then, a fractional order proportional-derivative (PDμ) controller was adopted as the speed controller to provide the optimal step response performance for the servo system. A universal look-up table was established to estimate the derivative order of the PDμ controller, according to the optimal samples collected by an improved differential evolution algorithm. With the look-up table, the optimal PDμ controller can be tuned analytically. Simulation and experimental results show that the servo system using the composite control scheme can achieve optimal tracking performance and has robustness to the motor parametric uncertainties and disturbance torques.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Qiang Gao ◽  
Yong Zhu ◽  
Jinhua Liu

A fuel metering valve actuated by two binary-coded digital valve arrays (BDVAs) is proposed to improve the reliability of conventional fuel metering valves piloted by a servo valve. The design concept of this configuration is obtained from the structural characteristics of the dual nozzle-flapper and the flow regulation method of the digital hydraulic technology. The structure and working principle of the fuel metering valve are presented. Then, a mathematical model of the entire valve is developed for dynamic analysis. Subsequently, the mechanism of the transient flow uncertainty of the BDVA is revealed through simulation to determine the fluctuation in the velocity of the fuel metering valve. Furthermore, step response indicates that the delay time of the fuel metering valve is within 4.1 ms. Finally, to improve the position tracking accuracy of the fuel metering valve, a velocity feedforward proportional-integral controller with pulse code modulation is proposed. A series of comparative analyses indicate that compared with those of the velocity feedforward controller, the average and standard deviation of the position error for the proposed controller are reduced by 78 and 72.7%, respectively. The results prove the feasibility of the proposed valve and the effectiveness of the proposed control strategy.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 451
Author(s):  
Shijun Xie ◽  
Zhou Mu ◽  
Weidong Ding ◽  
Zhenbo Wan ◽  
Shaochun Su ◽  
...  

The on-site measurement of transient voltages is of great significance in analyzing the fault cause of power systems and optimizing the insulation coordination of power equipment. Conventional voltage transformers normally have a narrow bandwidth and are unable to accurately measure various transient voltages in power systems. In this paper, a wideband parallel resistive–capacitive voltage divider is developed, which can be used for online monitoring of transient voltages in a 220 kV power grid. The structures of the high-voltage and low-voltage arms were designed. The internal electric field distribution of the high-voltage arm was analyzed. The influence factors and improvement techniques of the upper frequency limit were studied. The parameters of the elements of the divider were determined. The voltage withstand performances and scale factors under lightning impulses and AC and DC voltages, the temperature stabilities of scale factors and the step response and bandwidth of the developed voltage divider were tested. The results show that the deviations of the scale factors under various voltage waveforms and different temperatures ranging from −20 to 40 °C are within 3%. The withstand voltage meets the relevant requirements specified in IEC60071-1-2011. The step response 10~90% rise time is approximately 29 ns, and the 3 dB bandwidth covers the range of DC to 10 MHz.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 442
Author(s):  
Ruiming Liu ◽  
Shengtie Wang ◽  
Guangchen Liu ◽  
Sufang Wen ◽  
Jianwei Zhang ◽  
...  

This paper proposes a novel virtual inertia control (VIC) method based on a feedforward decoupling strategy to address the low inertia issue of power-converter-interfaced microgrids. The feedforward control scheme is employed to eliminate the coupling between active and reactive power caused by line impedance. The active power-voltage droop can be applied to the battery converter in the hybrid energy storage system (HESS). A novel VIC method is developed for the supercapacitor (SC) converter of HESS to increase the inertia of the microgrid. Detailed small-signal modeling of the SC converter with the proposed VIC was conducted, and the transfer function model was obtained. Parameter analysis of the virtual inertia and virtual damping was carried out with the pole-zero map method, and the step response characteristic of output voltage amplitude with power variation was analyzed in detail, deriving the parameter design principle. The simulation study verifies the effectiveness and validity of the proposed control strategy. The proposed feedforward decoupling method and VIC can be widely applied in microgrids to enhance inertia and improve their power quality.


2022 ◽  
Author(s):  
Asghar Dabiri ◽  
Nader Jafarnia Dabanloo ◽  
Fereidoun Nooshiravan ◽  
Keivan Maghooli

Abstract This paper presents design and simulation of an Interval type-2 fuzzy system (IT2FS) based, Adaptive neuro-fuzzy inference system(ANFIS) pacemaker controller in MATLAB. After designing the type-1 fuzzy logic model, the stability of the designed system has been verified in the time-domain (unit step response). In previous works, type-1 (IT1FS) model step response was analyzed and compared with the other PID and Fuzzy models that only least-square-estimation and the backpropagation algorithms are used for tuning membership functions and generation of type-1 fis (fuzzy inference system) file, but at current work Fuzzy C Means (FCM) method that shows better results has been used. The pacemaker controller determines the pacing rate and adjusts the heart rate of the patient with respect to the reference input signal. The rise-time, overshoot and settling-time have been improved significantly.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Heng Zhang ◽  
Yaoyao Liao ◽  
Ze Tao ◽  
Zisheng Lian ◽  
Ruihao Zhao

In the field of fully mechanized coal mining equipment, the hydraulic valve used in the hydraulic support is an on/off directional valve. There are many problems caused by the valve such as large pressure shock and discontinuous flow control. Therefore, a novel two-position three-way hydraulic proportional valve suitable for high-pressure and large-flow conditions is proposed to overcome the above problems. The novel valve utilizes a two-stage structure and the displacement follow-up principle is adopted between the pilot stage and the main stage to meet proportional control. In this paper, a simulation model of the novel proportional valve was established after a simplified analysis of the structural principle. Its reliability and the feasibility of the design were verified by the test results under different working conditions. Then, the step response characteristics of the proportional valve under different strokes were predicted and analyzed. Nonlinear characteristics were presented, and the closing time was shorter than the opening time because of the influence of nonlinear flow force. Under different ramp signals, the displacement of the main inlet spool was always approximately equal to the displacement of the pilot stage. Then, the motion relationship between the pilot stage and the main stage was studied, and the influence of the structural parameters on the stability was analyzed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Huiyi Zhou ◽  
Tianlin Lu ◽  
Shuting Zhang ◽  
Xin Zhang

Aiming at the lumped-circuits model of the lossless transmission line in the digital simulation, the article discusses and analyzes the unit step response generation of the lumped-circuits model by comparing the numerical simulation results of the implicit trapezoidal method, the implicit Euler method, and a multi-step formula. The root cause of numerical oscillations pointed out that using the L-stable numerical algorithm to indirectly simulate the dynamic response of the lumped-circuits model is a numerical method that does not truly reflect the original model, but it can directly reflect the true dynamic response of the lossless transmission line. In this study, a method for determining the chained number in the digital simulation of a lumped-circuits model is given. The simulation results prove the effectiveness of the method.


Author(s):  
Alicia Dautt-Silva ◽  
Raymond de Callafon

Abstract The task of trajectory planning for a dual-mirror optical pointing system greatly benefits from carefully designed dynamic input signals. This paper summarizes the application of multivariable input shaping (IS) for a dual-mirror system, starting from initial open-loop step-response data. The optical pointing system presented consists of two Fast Steering Mirrors (FSM) for which dynamically coupled input signals are designed, while adhering to mechanical and input signal constraints. For the solution, the planned trajectories for the dual-mirrors are determined via (inverse) kinematic analysis. A linear program (LP) problem is used to compute the dynamic input signal for each of the FSMs, with one of the mirrors acting as an image motion compensation device that guarantees tracking of a planned trajectory within a specified accuracy and the operating constraints of the FSMs.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3447
Author(s):  
Kee-Won Seong ◽  
Jang Hyun Sung

A methodology named the step response separation (SRS) method for deriving S-curves solely from the data for basin runoff and the associated instantaneous unit hydrograph (IUH) is presented. The SRS method extends the root selection (RS) method to generate a clearly separated S-curve from runoff incorporated in mathematical procedure utilizing the step response function. Significant improvements in performance are observed in separating the S-curve with rainfall. A procedure to evaluate the hydrologic stability provides ways to minimize the oscillation of the S-curve associated with the determination of infiltration and baseflow. The applicability of the SRS method to runoff reproduction is examined by comparison with observed basin runoff based on the RS method. The SRS method applied to storm events for the Nenagh basin resulted in acceptable S-curves and showed its general applicability to optimization for rainfall-runoff modeling.


Sign in / Sign up

Export Citation Format

Share Document