scholarly journals On Solitons, Non-Linear Sigma-Models, and Two-Dimensional Gravity

2004 ◽  
Author(s):  
Floyd Williams
2010 ◽  
Vol 829 (1-2) ◽  
pp. 161-175 ◽  
Author(s):  
Yi-Xin Chen ◽  
Yong-Qiang Wang

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Garrett Goon ◽  
Scott Melville ◽  
Johannes Noller

Abstract We study quantum corrections to hypersurfaces of dimension d + 1 > 2 embedded in generic higher-dimensional spacetimes. Manifest covariance is maintained throughout the analysis and our methods are valid for arbitrary co-dimension and arbitrary bulk metric. A variety of theories which are prominent in the modern amplitude literature arise as special limits: the scalar sector of Dirac-Born-Infeld theories and their multi-field variants, as well as generic non-linear sigma models and extensions thereof. Our explicit one-loop results unite the leading corrections of all such models under a single umbrella. In contrast to naive computations which generate effective actions that appear to violate the non-linear symmetries of their classical counterparts, our efficient methods maintain manifest covariance at all stages and make the symmetry properties of the quantum action clear. We provide an explicit comparison between our compact construction and other approaches and demonstrate the ultimate physical equivalence between the superficially different results.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ilka Brunner ◽  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract In this paper, we construct defects (domain walls) that connect different phases of two-dimensional gauged linear sigma models (GLSMs), as well as defects that embed those phases into the GLSMs. Via their action on boundary conditions these defects give rise to functors between the D-brane categories, which respectively describe the transport of D-branes between different phases, and embed the D-brane categories of the phases into the category of D-branes of the GLSMs.


1995 ◽  
Vol 446 (1-2) ◽  
pp. 211-222 ◽  
Author(s):  
Jan de Boer ◽  
Bas Peeters ◽  
Kostas Skenderis ◽  
Peter van Nieuwenhuizen

Sign in / Sign up

Export Citation Format

Share Document