linear sigma models
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 20)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Hyun Min Lee ◽  
Adriana G. Menkara

Abstract We consider general linear Higgs-sigma models as ultra-violet completions of the Higgs inflation. We introduce general higher curvature terms beyond Einstein gravity and recast them into a class of linear Higgs-sigma models in the scalar-dual formulation where conformal symmetry is manifest. Integrating out the sigma field in this class of linear sigma models, we obtain the same Higgs inflation Lagrangian of non-linear sigma model type in the effective theory. We show that the successful inflation for sigma field singles out the sigma-field potential derived from the R2 term and the tracker solution for dark energy at late times can be realized for the Rp+1 term with −1 < p < 0. We also discuss the implications of Higgs-sigma interactions for the inflation and the vacuum stability in the Standard Model.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Osamu Fukushima ◽  
Jun-ichi Sakamoto ◽  
Kentaroh Yoshida

Abstract Recently, a variety of deformed T1,1 manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [46]. We refer to the NLSMs with the integrable deformed T1,1 as the ABL model for brevity. Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros. We specify boundary conditions in the CS theory that give rise to the ABL model and derive the sigma-model background with target-space metric and anti-symmetric two-form. Finally, we present two simple examples 1) an anisotropic T1,1 model and 2) a G/H λ-model. The latter one can be seen as a one-parameter deformation of the Guadagnini-Martellini-Mintchev model.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Gleb A. Kotousov ◽  
Sergei L. Lukyanov

Abstract An integrable system is introduced, which is a generalization of the $$ \mathfrak{sl} $$ sl (2) quantum affine Gaudin model. Among other things, the Hamiltonians are constructed and their spectrum is calculated using the ODE/IQFT approach. The model fits into the framework of Yang-Baxter integrability. This opens a way for the systematic quantization of a large class of integrable non-linear sigma models. There may also be some interest in terms of Condensed Matter applications, as the theory can be thought of as a multiparametric generalization of the Kondo model.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ilka Brunner ◽  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract In this paper, we construct defects (domain walls) that connect different phases of two-dimensional gauged linear sigma models (GLSMs), as well as defects that embed those phases into the GLSMs. Via their action on boundary conditions these defects give rise to functors between the D-brane categories, which respectively describe the transport of D-branes between different phases, and embed the D-brane categories of the phases into the category of D-branes of the GLSMs.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ori J. Ganor ◽  
Hao-Yu Sun ◽  
Nesty R. Torres-Chicon

Abstract We study the supersymmetric partition function of a 2d linear σ-model whose target space is a torus with a complex structure that varies along one worldsheet direction and a Kähler modulus that varies along the other. This setup is inspired by the dimensional reduction of a Janus configuration of 4d $$ \mathcal{N} $$ N = 4 U(1) Super-Yang-Mills theory compactified on a mapping torus (T2 fibered over S1) times a circle with an SL(2, ℤ) duality wall inserted on S1, but our setup has minimal supersymmetry. The partition function depends on two independent elements of SL(2, ℤ), one describing the duality twist, and the other describing the geometry of the mapping torus. It is topological and can be written as a multivariate quadratic Gauss sum. By calculating the partition function in two different ways, we obtain identities relating different quadratic Gauss sums, generalizing the Landsberg-Schaar relation. These identities are a subset of a collection of identities discovered by F. Deloup. Each identity contains a phase which is an eighth root of unity, and we show how it arises as a Berry phase in the supersymmetric Janus-like configuration. Supersymmetry requires the complex structure to vary along a semicircle in the upper half-plane, as shown by Gaiotto and Witten in a related context, and that semicircle plays an important role in reproducing the correct Berry phase.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Garrett Goon ◽  
Scott Melville ◽  
Johannes Noller

Abstract We study quantum corrections to hypersurfaces of dimension d + 1 > 2 embedded in generic higher-dimensional spacetimes. Manifest covariance is maintained throughout the analysis and our methods are valid for arbitrary co-dimension and arbitrary bulk metric. A variety of theories which are prominent in the modern amplitude literature arise as special limits: the scalar sector of Dirac-Born-Infeld theories and their multi-field variants, as well as generic non-linear sigma models and extensions thereof. Our explicit one-loop results unite the leading corrections of all such models under a single umbrella. In contrast to naive computations which generate effective actions that appear to violate the non-linear symmetries of their classical counterparts, our efficient methods maintain manifest covariance at all stages and make the symmetry properties of the quantum action clear. We provide an explicit comparison between our compact construction and other approaches and demonstrate the ultimate physical equivalence between the superficially different results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Kimyeong Lee

Abstract We explore 6d (1, 0) superconformal field theories with SU(3) and SU(2) gauge symmetries which cascade after Higgsing to the E-string theory on a single M5 near an E8 wall. Specifically, we study the 2d $$ \mathcal{N} $$ N = (0, 4) gauge theories which describe self-dual strings of these 6d theories. The self-dual strings can be also viewed as instanton string solitons of 6d Yang-Mills theories. We find the 2d anomaly-free gauge theories for self-dual strings, amending the naive ADHM gauge theories which are anomalous, and calculate their elliptic genera. While these 2d theories respect the flavor symmetry of each 6d SCFT only partially, their elliptic genera manifest the symmetry fully as these functions as BPS index are invariant in strongly coupled IR limit. Our consistent 2d (0, 4) gauge theories also provide new insights on the non-linear sigma models for the instanton strings, providing novel UV completions of the small instanton singularities. Finally, we construct new 2d quiver gauge theories for the self-dual strings in 6d E-string theory for multiple M5-branes probing the E8 wall, and find their fully refined elliptic genera.


2021 ◽  
Vol 59 ◽  
pp. 47-65
Author(s):  
Paul Bracken

General classes of non-linear sigma models originating from a specified action are developed and studied. Models can be grouped and considered within a single mathematical structure this way. The geometrical properties of these models and the theories they describe are developed in detail. The zero curvature representation of the equations of motion are found. Those representations which have a spectral parameter are of importance here. Some new models with Lax pairs which depend on a spectral parameter are found. Some particular classes of solutions are worked out and discussed.


Sign in / Sign up

Export Citation Format

Share Document