scholarly journals Nuclear equation of state in the relativistic mean field model with density dependent coupling constants

2011 ◽  
Author(s):  
Maria Voskresenskaya ◽  
Stefan Typel
2012 ◽  
Vol 24 (10) ◽  
pp. 1250025 ◽  
Author(s):  
MARIA J. ESTEBAN ◽  
SIMONA ROTA NODARI

In this paper, we consider a model for a nucleon interacting with the ω and σ mesons in the atomic nucleus. The model is relativistic, but we study it in the nuclear physics non-relativistic limit, which is of a very different nature from the one of the atomic physics. Ground states with a given angular momentum are shown to exist for a large class of values for the coupling constants and the mesons' masses. Moreover, we show that, for a good choice of parameters, the very striking shapes of mesonic densities inside and outside the nucleus are well described by the solutions of our model.


2011 ◽  
Vol 20 (09) ◽  
pp. 1983-2010 ◽  
Author(s):  
A. SULAKSONO

The effects of auxiliary contribution in forms of electromagnetic tensors and relativistic electromagnetic exchange in local density approximation as well as δ meson and isovector density-dependent nonlinear terms in standard relativistic mean field model constrained by nuclear matter stability criteria in some selected finite nuclei and nuclear matter properties are studied. It is found that in the case of finite nuclei, the electromagnetic tensors play the most dominant part compared to other auxiliary terms. Due to the presence of electromagnetic tensors, the binding energies prediction of the model can be improved quite significantly. However, these terms do not yield demanded effects for rms radii prediction. In the case of nuclear matter properties, the isovector density-dependent nonlinear term plays the most crucial role in providing predictions which are quite compatible with experimental constraints. We have also shown these auxiliary contributions are indeed unable to improve the single particle spectrum results of the model.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 2400-2406
Author(s):  
R. HUGUET ◽  
J. C. CAILLON ◽  
J. LABARSOUQUE

We have built an effective Walecka-type hadronic Lagrangian in which the hadron masses and the density dependence of the coupling constants are deduced from the quark dynamics using a Nambu–Jona-Lasinio model. In order to stabilize nuclear matter an eight-quark term has been included. The parameters of this Nambu–Jona-Lasinio model have been determined using the meson properties in the vacuum but also in the medium through the omega meson mass in nuclei measured by the TAPS collaboration. Realistic properties of nuclear matter have been obtained.


2020 ◽  
Vol 638 ◽  
pp. A40
Author(s):  
A. Mantziris ◽  
A. Pastore ◽  
I. Vidaña ◽  
D. P. Watts ◽  
M. Bashkanov ◽  
...  

We present the extension of a previous study where, assuming a simple free bosonic gas supplemented with a relativistic mean-field model to describe the pure nucleonic part of the equation of state, we studied the consequences that the first non-trivial hexaquark d*(2380) could have on the properties of neutron stars. Compared to that exploratory work, we employ a standard non-linear Walecka model including additional terms that describe the interaction of the d*(2380) di-baryon with the other particles of the system through the exchange of σ- and ω-meson fields. Our results show that the presence of the d*(2380) leads to maximum masses compatible with recent observations of ∼2 M⊙ millisecond pulsars if the interaction of the d*(2380) is slightly repulsive or the d*(2380) does not interact at all. An attractive interaction makes the equation of state too soft to be able to support a 2 M⊙ neutron star whereas an extremely repulsive one induces the collapse of the neutron star into a black hole as soon as the d*(2380) appears.


2003 ◽  
Vol 12 (04) ◽  
pp. 543-554 ◽  
Author(s):  
Bao-Xi Sun ◽  
Xiao-Fu Lu ◽  
Peng-Nian Shen ◽  
En-Guang Zhao

The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons.


Sign in / Sign up

Export Citation Format

Share Document