scholarly journals Quantum Speedup Based on Classical Decision Trees

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 241
Author(s):  
Salman Beigi ◽  
Leila Taghavi

Lin and Lin \cite{LL16} have recently shown how starting with a classical query algorithm (decision tree) for a function, we may find upper bounds on its quantum query complexity. More precisely, they have shown that given a decision tree for a function f:{0,1}n→[m] whose input can be accessed via queries to its bits, and a guessing algorithm that predicts answers to the queries, there is a quantum query algorithm for f which makes at most O(GT) quantum queries where T is the depth of the decision tree and G is the maximum number of mistakes of the guessing algorithm. In this paper we give a simple proof of and generalize this result for functions f:[ℓ]n→[m] with non-binary input as well as output alphabets. Our main tool for this generalization is non-binary span program which has recently been developed for non-binary functions, and the dual adversary bound. As applications of our main result we present several quantum query upper bounds, some of which are new. In particular, we show that topological sorting of vertices of a directed graph G can be done with O(n3/2) quantum queries in the adjacency matrix model. Also, we show that the quantum query complexity of the maximum bipartite matching is upper bounded by O(n3/4m+n) in the adjacency list model.

2018 ◽  
Vol 18 (15&16) ◽  
pp. 1332-1349
Author(s):  
Ehsan Ebrahimi ◽  
Dominique Unruh

We study the quantum query complexity of finding a collision for a function f whose outputs are chosen according to a non-uniform distribution D. We derive some upper bounds and lower bounds depending on the min-entropy and the collision-entropy of D. In particular, we improve the previous lower bound by Ebrahimi Targhi et al. from \Omega(2^{k/9}) to \Omega(2^{k/5}) where k is the min-entropy of D.


2019 ◽  
Vol 19 (9&10) ◽  
Author(s):  
Salman Beigi ◽  
Leila Taghavi

Span programs characterize the quantum query complexity of binary functions f:\{0,\ldots,\ell\}^n \to \{0,1\} up to a constant factor. In this paper we generalize the notion of span programs for functions with non-binary input/output alphabets f: [\ell]^n \to [m]. We show that non-binary span program characterizes the quantum query complexity of any such function up to a constant factor. We argue that this non-binary span program is indeed the generalization of its binary counterpart. We also generalize the notion of span programs for a special class of relations. Learning graphs provide another tool for designing quantum query algorithms for binary functions. In this paper, we also generalize this tool for non-binary functions, and as an application of our non-binary span program show that any non-binary learning graph gives an upper bound on the quantum query complexity.


2015 ◽  
pp. 435-452
Author(s):  
Andris Ambainis ◽  
Jozef Gruska ◽  
Shenggen Zheng

It has been proved that almost all n-bit Boolean functions have exact classical query complexity n. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all n-bit Boolean functions can be computed by an exact quantum algorithm with less than n queries. More exactly, we prove that ANDn is the only n-bit Boolean function, up to isomorphism, that requires n queries.


2006 ◽  
Vol 22 (5) ◽  
pp. 691-725 ◽  
Author(s):  
Stefan Heinrich

2021 ◽  
Vol 2 (4) ◽  
pp. 1-9
Author(s):  
Scott Aaronson

I offer a case that quantum query complexity still has loads of enticing and fundamental open problems—from relativized QMA versus QCMA and BQP versus IP , to time/space tradeoffs for collision and element distinctness, to polynomial degree versus quantum query complexity for partial functions, to the Unitary Synthesis Problem and more.


Author(s):  
Aija Berzina ◽  
Andrej Dubrovsky ◽  
Rusins Freivalds ◽  
Lelde Lace ◽  
Oksana Scegulnaja

Algorithmica ◽  
2015 ◽  
Vol 76 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Stacey Jeffery ◽  
Robin Kothari ◽  
François Le Gall ◽  
Frédéric Magniez

Sign in / Sign up

Export Citation Format

Share Document