Modeling of a Transfer Task in Computer Assisted Surgical Training

2021 ◽  
Vol 6 (1) ◽  
pp. e000685
Author(s):  
Michael Mak ◽  
Yejun Hong ◽  
William Murray Trask ◽  
Randy Thompson ◽  
Helen Chung ◽  
...  

ObjectiveProcuring an affordable eye mount that can stabilise a cadaveric eye and simulate a patient’s normal facial contours represents an ongoing challenge in the ophthalmology simulation wet lab, with notable limitations to all currently available commercial options. This project uses computer-assisted design and three-dimensional (3D)-printing techniques to tackle these challenges for ophthalmologic surgical training.Methods and AnalysisProof-of-concept study. Using Autodesk Fusion 360, we designed and 3D-printed a modular device that consists of 11 pieces forming a head structure. Standard OR tubing and syringes were adapted to create an adjustable-suction system to affix cadaveric eyes. Further modular inserts were customised to house non-cadaveric simulation eyes.ResultsThree-dimensional eye mount for procedures in ophthalmology (TEMPO) reliably fixed a cadaveric eye in stable position throughout surgical manipulation. Trainees were able to drape and practice appropriate hand positioning while corneal suturing. Overall, this model was affordable, at a cost of approximately $C200 to print. The modular nature renders individual pieces convenient for replacement and customisable to simulate regional anatomical variation and accommodate non-cadaveric eyes.ConclusionsTEMPO represents an affordable, high-fidelity alternative to existing commercially available eye mounts. It reliably fixates cadaveric and simulation eyes and provides an enhanced surgical training experience by way of its realistic facial contours. It is released as an open-source computer-aided design file, customisable to interested trainees with appropriate software and 3D-printing capacity.


2000 ◽  
Vol 33 (26) ◽  
pp. 499-503
Author(s):  
M.P.S.F. Gomes ◽  
B.L. Davies

2014 ◽  
Vol 24 ◽  
pp. 889-899 ◽  
Author(s):  
Liana Napalkova ◽  
Jerzy W. Rozenblit ◽  
George Hwang ◽  
Allan J. Hamilton ◽  
Liana Suantak

Author(s):  
E. T. O'Toole ◽  
R. R. Hantgan ◽  
J. C. Lewis

Thrombocytes (TC), the avian equivalent of blood platelets, support hemostasis by aggregating at sites of injury. Studies in our lab suggested that fibrinogen (fib) is a requisite cofactor for TC aggregation but operates by an undefined mechanism. To study the interaction of fib with TC and to identify fib receptors on cells, fib was purified from pigeon plasma, conjugated to colloidal gold and used both to facilitate aggregation and as a receptor probe. Described is the application of computer assisted reconstruction and stereo whole mount microscopy to visualize the 3-D organization of fib receptors at sites of cell contact in TC aggregates and on adherent cells.Pigeon TC were obtained from citrated whole blood by differential centrifugation, washed with Ca++ free Hank's balanced salts containing 0.3% EDTA (pH 6.5) and resuspended in Ca++ free Hank's. Pigeon fib was isolated by precipitation with PEG-1000 and the purity assessed by SDS-PAGE. Fib was conjugated to 25nm colloidal gold by vortexing and the conjugates used as the ligand to identify fib receptors.


Author(s):  
A.M. Jones ◽  
A. Max Fiskin

If the tilt of a specimen can be varied either by the strategy of observing identical particles orientated randomly or by use of a eucentric goniometer stage, three dimensional reconstruction procedures are available (l). If the specimens, such as small protein aggregates, lack periodicity, direct space methods compete favorably in ease of implementation with reconstruction by the Fourier (transform) space approach (2). Regardless of method, reconstruction is possible because useful specimen thicknesses are always much less than the depth of field in an electron microscope. Thus electron images record the amount of stain in columns of the object normal to the recording plates. For single particles, practical considerations dictate that the specimen be tilted precisely about a single axis. In so doing a reconstructed image is achieved serially from two-dimensional sections which in turn are generated by a series of back-to-front lines of projection data.


Sign in / Sign up

Export Citation Format

Share Document