adherent cells
Recently Published Documents


TOTAL DOCUMENTS

1070
(FIVE YEARS 119)

H-INDEX

72
(FIVE YEARS 7)

Biology Open ◽  
2022 ◽  
Author(s):  
Chenxiao Liu ◽  
Karolina Skorupinska-Tudek ◽  
Sven-Göran Eriksson ◽  
Ingela Parmryd

Vγ9Vδ2 T cells is the dominant γδ T cell subset in human blood. They are cytotoxic and activated by phosphoantigens whose concentrations are increased in cancer cells, making the cancer cells targets for Vγ9Vδ2 T cell immunotherapy. For successful immunotherapy, it is important both to characterise Vγ9Vδ2 T cell proliferation and optimise the assessment of their cytotoxic potential, which is the aim of this study. We found that supplementation with freshly-thawed human serum potentiated Vγ9Vδ2 T cell proliferation from peripheral mononuclear cells (PBMCs) stimulated with (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and consistently enabled Vγ9Vδ2 T cell proliferation from cryopreserved PBMCs. In cryopreserved PBMCs the proliferation was higher than in freshly prepared PBMCs. In a panel of short-chain prenyl alcohols, monophosphates and diphosphates, most diphosphates and also dimethylallyl monophosphate stimulated Vγ9Vδ2 T cell proliferation. We developed a method where the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells is assessed at the single cell level using flow cytometry, which gives more clear-cut results than the traditional bulk release assays. Moreover, we found that HMBPP enhances the Vγ9Vδ2 T cell cytotoxicity towards colon cancer cells. In summary we have developed an easily interpretable method to assess the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells, found that Vγ9Vδ2 T cell proliferation can be potentiated media-supplementation and how misclassification of non-responders may be avoided. Our findings will be useful in the further development of Vγ9Vδ2 T cell immunotherapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenjun Wang ◽  
Jianping Wei ◽  
Xiaoyun Tu ◽  
Xiaoqun Ye

Background. Cancer stem cells (CSCs) are responsible for tumorigenesis, chemoresistance, and metastasis. Chemoresistance is a major challenge in the management of lung cancer. Glutathione-sulphur-transferase-π (GST-π) plays an important role in the origin and development of various types of cancer by regulating the cellular redox balance. Recent investigations have demonstrated that GST-π is associated with the chemoresistance of lung CSCs (LCSCs). However, the mechanism of GST-π in lung cancer, particularly in LCSCs, remains unclear. The present study is aimed at exploring the potential role of GST-π in stemness and cisplatin (DDP) resistance of LCSCs. Materials and methods. In the present study, lung cancer cell spheres were established using the A549 cell line, which according to our previous research, was confirmed to exhibit characteristics of stem cells. Next, GST-π protein expression, apoptosis percentage, and intracellular reactive oxygen species (ROS) concentration in A549 adherent cells and A549 cell spheres were analyzed by western blotting and flow cytometry, respectively. Finally, DDP resistance, ROS concentration, and GST-π expression in LCSCs were analyzed following the interference with GST-π using DL-buthionine-(S,R)-sulphoximine and N-acetylcysteine. Results. The results revealed that GST-π was highly expressed in A549 cell spheres compared with A549 adherent cells and was associated with a decreased intracellular ROS concentration (both P < 0.05 ). Regulating GST-π protein expression could alter DDP resistance of LCSCs by influencing ROS. Conclusion. These results suggested that GST-π may be important for LCSC drug resistance by downregulating ROS levels. These findings may contribute to the development of new adjuvant therapeutic strategies for lung cancer.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2365-2365
Author(s):  
Shireen J. Usman ◽  
Thomas Conley ◽  
Hannah E. Whitehead ◽  
Wojciech Wojciechowski ◽  
Kaye Thomas ◽  
...  

Abstract INTRODUCTION Naked nuclei (NN) are observed upon examining bone marrow aspirate slides from healthy individuals and from those with hematologic malignancies, but are not well understood. Without characteristic findings like cytoplasm or plasma membrane, NN are considered remnants of slide preparation or are discounted as cells of undetermined significance. NN have been associated with poor prognosis in several solid cancers. Understanding the significance of NN in hematologic malignancies such as acute myelogenous leukemia (AML) may elucidate valuable diagnostic and prognostic knowledge. Decellularized Wharton's jelly matrix (DWJM) is an extra cellular matrix (ECM)-based in vitro model that shares similar elements with the bone marrow ECM and can be used as scaffolding to culture leukemia cells. We hypothesize that NN exist in AML and interact with other cells, suggesting potential biological relevance within the bone marrow microenvironment. METHODS Primary AML samples obtained by leukapheresis were cultured in suspension with growth media or in the presence of DWJM submerged in growth media. In samples grown with DWJM, cells that were non-adherent to the matrix were collected first and then adherent cells were isolated by treating DWJM with collagenase. Live cells were stained with CellVue Maroon (CVM) for membrane, CellTracker Green (CTG) for cytoplasm, and Hoechst 33342 for nucleus, followed by analysis with Amnis/Luminex ImageStream-X imaging flow cytometer (Figure 1A). NN were defined as events positive for nuclear stain and negative for cytoplasmic and membrane stains (Figure 1B). 3-D movement of adherent AML cells in DWJM was captured in real time using confocal microscopy. Fixed cells from leukemia cell line K562 served as a control for movement. NN (Hoechst positive only), non-nucleated (Hoechst negative/CTG positive), and nucleated cells (Hoechst and CTG positive) were identified by fluorescent labeling. NN were also observed after isolation by cell sorting. Cell speed, cell displacement from origin, and change in distance to closest neighboring cell over time were measured. Additionally, flow sorted NN were examined by immunohistochemistry (IHC). RESULTS Adherent populations contained significantly more NN than non-adherent and suspension populations. The frequency of NN in matrix adherent cells ranged from 0.4-2.4% at day 3 and 0.5-5.4% at day 7 of culture (Figure 1C). Through confocal microscopic analysis, we observed NN, nucleated, and non-nucleated cells moving at speeds ranging from 0.002-0.08 µm/sec. Fixed cells showed no discernible movement in DWJM. The average speed of NN [0.019 mm/s, SD 0.011] significantly differed from the average speed of nucleated and non-nucleated cells [0.027 mm/s, SD 0.016] (p=0.004) (Figure 1E). To demonstrate directional movement, we measured change in distance between NN and closest neighboring nucleated or non-nucleated cells over time. Cells (nucleated and non-nucleated) and NN moved closer to each other over time suggesting directional movement (p=0.001) (Figure 1D). NN also showed movement in DWJM after isolation by cell sorting. IHC analysis showed sorted NN stained positive for nuclear lamin A/C, which are considered markers of nuclear membrane (Figure 1F). CONCLUSIONS Our findings confirm that NN are present in primary AML cells cultured in vitro using ourECM-based model and that they can be isolated using flow cytometry. Additionally, NN display directional movement in DWJM suggesting that they interact with other cells and may be biologically relevant structures in the bone marrow microenvironment. Figure 1 Figure 1. Disclosures Baran: AstraZeneca/Acerta: Research Funding. Chu: Pfizer: Current equity holder in publicly-traded company; Acerta/AstraZeneca: Research Funding; TG Therapeutics: Research Funding.


2021 ◽  
Vol 22 (19) ◽  
pp. 10742
Author(s):  
Tommaso Vannocci ◽  
Luca Quaroni ◽  
Antonio de Riso ◽  
Giulia Milordini ◽  
Magda Wolna ◽  
...  

We used infrared (IR) microscopy to monitor in real-time the metabolic turnover of individual mammalian cells in morphologically different states. By relying on the intrinsic absorption of mid-IR light by molecular components, we could discriminate the metabolism of adherent cells as compared to suspended cells. We identified major biochemical differences between the two cellular states, whereby only adherent cells appeared to rely heavily on glycolytic turnover and lactic fermentation. We also report spectroscopic variations that appear as spectral oscillations in the IR domain, observed only when using synchrotron infrared radiation. We propose that this effect could be used as a reporter of the cellular conditions. Our results are instrumental in establishing IR microscopy as a label-free method for real-time metabolic studies of individual cells in different morphological states, and in more complex cellular ensembles.


2021 ◽  
pp. 130889
Author(s):  
Sandra Skorupska ◽  
Ilona Grabowska-Jadach ◽  
Artur Dybko ◽  
Zbigniew Brzozka

Author(s):  
Anoosheh Ehtesham ◽  
Ayyoob Khosravi ◽  
Marie Saghaeian Jazi ◽  
Jahanbakhsh Asadi ◽  
Seyyed Mehdi Jafari

Purpose: Esophageal squamous cell carcinoma (ESCC) is a highly aggressive cancer. The main cause of death in ESCC is related to relapse, metastasis, and resistance to cancer therapy. Recent studies have shown that a minor subset of cancer cells, known as cancer stem cells (CSCs), are responsible for tumor formation initiation and cancer progression. Understanding the genes associated with CSCs and metastasis can help in targeted cancer therapy. The aim of this study was to assess the expression of LAMB3 and TOP2A metastasis-associated genes in CSCs and adherent cells in the xenograft mouse model. Methods: Esophageal CSCs were enriched by the sphere formation method. The expression level of LAMB3 and TOP2A genes were evaluated in spheres and adherent cells in vitro by qRT-PCR. A xenograft mouse model was established to investigate the tumorigenesis and metastasis potential by subcutaneous and tail vein injection of CSCs and adherent YM-1 cells. Consequently, LAMB3 and TOP2A expression at the mRNA level was assessed in tumors. Immunohistochemistry was also used to evaluate the LAMB3 expression at the protein level in tumors. Results: CSCs-derived tumor was developed more quickly than the adherent cells-derived tumor. LAMB3 at mRNA and protein level was significantly down-regulated in sphere-derived tumor compared with adherent cells-derived tumor (p-value <0.05). TOP2A expression was almost similar in both sphere cells and adherent cells and there was no significant difference. Conclusion: we concluded that YM-1 spheres have CSCs characteristics in vitro with high capability of tumorigenicity in vivo. Our results were also shown that the LAMB3 expression was decreased in YM-1 spheres suggesting LAMB3 association with sphere formation.


Author(s):  
Sofia Pezoa ◽  
Randall Alfano ◽  
Atherly Pennybaker ◽  
Nathan Hazi ◽  
Andrew Laskowski

Large scale manufacturing of viral vectors or vaccines with adherent cells still relies heavily on the inclusion of fetal bovine serum for the growth and production phases. The inclusion of serum presents numerous problems with the undefined chemical makeup, the undesirable safety profile, and the constraints and limitations on the global supply. Despite these challenges, alternatives to serum for adherent cells have been limited; however, advances in large-scale production of recombinant human proteins have enabled the advancement of blood-free media that can support adherent cell growth. In order to circumvent the need for serum in adherent platforms, we developed a serum and blood-free, chemically defined medium specific for adherent human epithelial kidney cells and evaluated growth kinetics as well as viral vector production with associated adenovirus and lentivirus. We observed doubling times equal to or faster than doubling times observed in serum containing medium. We also demonstrate transfection efficiencies and viral titers that are equivalent to or higher than that of serum. Our results demonstrate that fetal bovine serum is not required for culture of adherent HEK cells, and that a serum-free, blood-free, chemically defined approach can be reliably implemented in the production of viral vectors for gene therapy.


2021 ◽  
Author(s):  
Mohammad Jahromi ◽  
Ganga Poudel ◽  
Steven Jones ◽  
Laura Curiel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document