3-D organization of fibrinogen receptors using computer reconstruction and whole-mount microscopy

Author(s):  
E. T. O'Toole ◽  
R. R. Hantgan ◽  
J. C. Lewis

Thrombocytes (TC), the avian equivalent of blood platelets, support hemostasis by aggregating at sites of injury. Studies in our lab suggested that fibrinogen (fib) is a requisite cofactor for TC aggregation but operates by an undefined mechanism. To study the interaction of fib with TC and to identify fib receptors on cells, fib was purified from pigeon plasma, conjugated to colloidal gold and used both to facilitate aggregation and as a receptor probe. Described is the application of computer assisted reconstruction and stereo whole mount microscopy to visualize the 3-D organization of fib receptors at sites of cell contact in TC aggregates and on adherent cells.Pigeon TC were obtained from citrated whole blood by differential centrifugation, washed with Ca++ free Hank's balanced salts containing 0.3% EDTA (pH 6.5) and resuspended in Ca++ free Hank's. Pigeon fib was isolated by precipitation with PEG-1000 and the purity assessed by SDS-PAGE. Fib was conjugated to 25nm colloidal gold by vortexing and the conjugates used as the ligand to identify fib receptors.

Author(s):  
B.A. Shinoda ◽  
M.D. Hardison ◽  
S.F. Mohammad ◽  
H.Y.K. Chuang ◽  
R.G. Mason

The utilization of blood platelets in experimentation frequently requires their separation from blood and subsequent resuspension in media of known composition. Several methods are available for preparation of isolated platelets (1-3) by differential centrifugation or gel filtration, but most methods are tedious and time consuming. Often platelets obtained by use of such methods are in a state different functionally and ultrastructurally from that of platelets in plasma (4).Recently Mohammad, Reddick, and Mason (5) reported a method in which platelets were separated from plasma by ADP-induced aggregation, washed several times, and then incubated in a carefully selected medium that resulted in deaggregation of platelets.


1972 ◽  
Vol 27 (01) ◽  
pp. 121-133 ◽  
Author(s):  
P Massini ◽  
E. F Lüscher

SummaryHuman blood platelets are aggregated by the basic polymers polylysine and DEAE- dextran. Under certain conditions a second phase of aggregation, concomitant with the release reaction, is elicited. The presence of ADP, calcium ions and a plasmatic cofactor within the primary aggregates are necessary for the induction of the release reaction. These experiments demonstrate that cell contact per se does not lead to a release reaction ; in order to become effective it must take place in the presence of ADP.


Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1331-1337 ◽  
Author(s):  
C Tran-Thang ◽  
EK Kruithof ◽  
F Bachmann

Abstract The contribution of vascular plasminogen activator (v-PA) to the lysis of whole blood and plasma clots was investigated. v-PA released into the circulation after infusion of deamino-D-arginine vasopressin (DDAVP) was shown to bind quantitatively to plasma clots. Its apparent molecular weight, determined by the SDS-PAGE fibrin-agarose underlay method, was approximately 68,000 daltons, and its activity was quenched by antibodies against human tissue plasminogen activator (t-PA). Clots prepared from post-DDAVP plasma or post-DDAVP whole blood, rich in v- PA, did not lyse when incubated in imidazole buffer or normal plasma, as determined by the release of 125I from radiolabeled clots. However, clots made of v-PA-poor plasma or whole blood, incubated in v-PA-rich plasma, underwent substantial lysis. The concentration of PA in clots incubated in v-PA-rich plasma progressively increased in relation to the initial concentration of v-PA in the surrounding plasma. The results suggest that, at low concentrations of circulating v-PA, a hemostatic plug will lyse at a very low rate. However, when the v-PA concentration in the clot environment is increased, v-PA will accumulate progressively onto fibrin and induce thrombolysis.


1996 ◽  
Vol 29 (5) ◽  
pp. 483-489
Author(s):  
Lilian Terezinha de Queiroz Leite ◽  
Mauricio Resende ◽  
Wanderley de Souza ◽  
Elizabeth R.S. Camargos ◽  
Matilde Cota Koury

Monoclonal antibodies (MABs) ivere produced against an etbylenediaminetetraacetate (EDTA) extract of Leptospira interrogans serovar icterohaemorrhagiae being characterized by gel precipitation as IgM and IgG (IgGl and IgG2b). The EDTA extract was detected as several bands by silver staining in SDS-PAGE. In the Western blot the bands around 20 KDa reacted with a monoclonal antibody, 47B4D6, and was oxidized by periodate and was not digested by pronase, suggesting that the determinant is of carbohydrate nature, lmmunocytochemistry, using colloidal gold labeling, showed that an EDTA extract determinant recognized by monoclonal antibody 47B4D6, is localized under the outer envelope of serovar icterohaemorrhagiae. Hoe AIAB raised against the EDTA extract was not able to protect hamsters from lethal challenge with virulent homologous leptospires.


1989 ◽  
Vol 101 (5) ◽  
pp. 522-526 ◽  
Author(s):  
Charles Lutz ◽  
Akira Takagi ◽  
Ivo P. Janecka ◽  
Isamu Sando

The complexities of the temporal bone and the critical inter-relationships among its key structures can be simplified with three-dimensional computer-assisted reconstruction. Knowledge of the topography of these structures and their mutual relationships in essential in any surgical approach to the temporal bone. Sixty sagittal histologic sections of a normal left temporal bone were examined. Each section, 30 μm in thickness, was optically enlarged. Segments representing the facial nerve, internal carotid artery, and inner ear structures from individual slides were traced and data were entered into a computer. A personal computer was used for data processing and analysis. Graphic software developed in our laboratory generated images with x-y-z coordinates that could be rotated In any plane. The high resolution of the computer graphics system, combined with the precision of histologic sections, permitted study of the critical three-dimensional anatomic relationships among essential intratemporal bone structures. The capability of reproducing individual and joint images of the intratemporal bone structures and viewing them from all surgical angles gives skull base and otologic surgeons Important topographic guidance. Accurate spatial measurements of temporal bone anatomy are now possible with the application of computer graphic technology.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 735-737 ◽  
Author(s):  
BK Kim ◽  
FC Chao ◽  
R Leavitt ◽  
AS Fauci ◽  
KM Meyers ◽  
...  

Abstract Diadenosine tetraphosphate (AP4A) is an unusual nucleotide found in a variety of cells, including platelets. It has been suggested that platelet AP4A is stored in the dense granules and is metabolically inactive. We have studied the AP4A content of blood platelets in two patients and three cattle with Chediak-Higashi syndrome (CHS), a hereditary platelet defect with dense granule deficiency. Acid-soluble extractions of whole blood and platelets were neutralized. The adenosine triphosphate (ATP) level was measured by luminescence technique. To measure the AP4A content, the neutralized extract was treated with phosphomonoesterase for removal of ATP. The AP4A content was then measured by coupling the phosphodiesterase and luciferase reaction. The AP4A content was 0.43 nmol/mg protein for normal human platelets and 0.004 nmol/mg protein for CHS platelets. The ATP/AP4A ratio was 67 for normal and 3,023 for CHS platelets. The whole blood AP4A was reduced by 89% in CHS patients who had only a slight decrease in ATP level (26% reduction). Similarly, bovine platelets with CHS showed a marked decrease of AP4A content and a moderate reduction of the ATP level. The platelet ATP/AP4A ratio was 351 and 3,133 for normal and CHS cattle, respectively. Results demonstrate a marked reduction of AP4A in CHS platelets and suggest that AP4A may be a useful marker for the measurement of dense granule content in platelets.


2003 ◽  
Vol 285 (2) ◽  
pp. H589-H596 ◽  
Author(s):  
Kazuyoshi Kirima ◽  
Koichiro Tsuchiya ◽  
Hiroyoshi Sei ◽  
Toyoshi Hasegawa ◽  
Michiyo Shikishima ◽  
...  

The measurement of hemoglobin-nitric oxide (NO) adduct (HbNO) in whole blood by the electron paramagnetic resonance (EPR) method seems relevant for the assessment of systemic NO levels. However, ceruloplasmin and unknown radical species overlap the same magnetic field as that of HbNO. To reveal the EPR spectrum of HbNO, we then introduced the EPR signal subtraction method, which is based on the computer-assisted subtraction of the digitized EPR spectrum of HbNO-depleted blood from that of sample blood using the software. Rats were treated with Nω-nitro-l-arginine methyl ester (l-NAME; 120 mg · kg–1 · day–1) for 1 wk to obtain HbNO-depleted blood. When this method was applied to the analysis of untreated fresh whole blood, the five-coordinate state of HbNO was observed. HbNO concentration in pentobarbital-anesthetized rats was augmented (change in [HbNO] = 1.6–5.5 μM) by infusion of l-arginine (0.2–0.6 g/kg) but not d-arginine. Using this method, we attempted to evaluate the effects of temocapril on HbNO dynamics in an l-NAME-induced rat endothelial dysfunction model. The oral administration of l-NAME for 2 wk induced a serious hypertension, and the HbNO concentration was reduced (change in [HbNO] = 5.7 μM). Coadministration of temocapril dose dependently improved both changes in blood pressure and the systemic HbNO concentration. In this study, we succeeded in measuring the blood HbNO level as an index of NO by the EPR HbNO signal subtraction method. We also demonstrated that temocapril improves abnormalities of NO dynamics in l-NAME-induced endothelial dysfunction rats using the EPR HbNO signal subtraction method.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4166-4166
Author(s):  
Neil Blumberg ◽  
Kelly F. Gettings ◽  
Joanna M. Heal

Abstract Three observations led us to investigate whether infusion of ABO non-identical platelets might impair, rather than improve hemostasis. (1) Exposure of platelets to immune complexes or platelet specific antibody can interfere with platelet function in vitro (Thromb Haemost76: 774, 1996). (2) In surgical patients receiving similar numbers of platelet transfusions, those receiving ABO non-identical platelets require 50% more red cell transfusions (Transfusion41: 790, 2001). (3) Patients with acute leukemia receiving prophylactic platelet transfusions typically are reported with serious bleeding at a rate of 15–20%, yet the bleeding rate in patients receiving only ABO identical platelets is below 5% (BMC Blood Disorders4: 6, 2004). In this study, the number of red cell transfusions and clinical outcomes during March 2002-Feb 2003 for all surgical patients of blood groups B and AB (B/AB) who received platelet transfusions were compared with patients of blood groups O and A (O/A). Recipients of blood groups B/AB would not be expected to experience excess bleeding, as measured by red cell transfusions, compared with patients of blood groups O/A. However, because of the lower prevalence of blood groups B/AB in the donor blood supply B/AB recipients may more frequently receive ABO mismatched platelet transfusions. O/A surgical patients (n=281) who received platelet transfusions required a mean of 13 ± 13 (SD) red cell transfusions as compared with B/AB patients (n=54), who required 19 ± 25 red cells (p =0.0086). O/A patients also had shorter length of stay, mean = 25 ± 34 days as compared with B/AB patients at 36 ± 59 days (p =0.064). Rates of mortality and nosocomial infections were not statistically significantly different. O/A patients received a mean of 14 ± 19 units of whole blood platelets during and after surgery, compared with 16 ± 16 units for B/AB patients (p =0.47). O/A patients received a mean of 3.3 ± 6.2 ABO non-identical platelets in contrast with B/AB patients who received 7.5 ± 11 (p = 0.0001). Both groups received similar numbers of ABO identical platelets: 11 ± 16 (O/A) versus 9 ± 12 (B/AB) (p =0.35). All but two patients received only ABO identical FFP and both groups received similar total amounts of FFP (mean of 9 units versus 11 units). While O/A patients received similar mean amounts of cryoprecipitate (6 units) to B/AB patients (8 units), the B/AB patients received significantly more ABO non-identical cryoprecipitate (mean = 4.2 vs. 2.3 units; p = 0.02). To study the effects of ABO incompatible plasma on platelet function, we measured PFA-100 (epinephrine cartridge) closure times in reconstituted whole blood exposing group A platelets to either group A or O plasma. In four of seven instances, closure times for A platelets exposed to O plasma were prolonged by more than 50 seconds, compared with A platelets exposed to allogeneic A plasma. These preliminary results support previous observations that exposure to ABO non-identical platelet transfusions is associated with increased red cell transfusions. One possible mechanism is impaired platelet function caused by antibody or immune complex binding. We speculate that transfusion of ABO mismatched platelets, FFP and/or cryoprecipitate may in some instances exacerbate bleeding, rather than correcting defects in hemostasis. Though further investigation is needed before suggesting changes in clinical practice these findings raise the possibility that use of ABO identical blood components might reduce red cell transfusion needs in bleeding surgical patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4774-4774
Author(s):  
Duohui Jing ◽  
Nael Alakel ◽  
Fernando Fierro ◽  
Katrin Mueller ◽  
Martin Bornhaeuser ◽  
...  

Abstract Hematopoietic stem cells (HSC) are defined by their capacity of self-renewal and differentiation. In recent years it became clear that cell to cell contact mediated communication between mesenchymal stromal cells (MSC) and HSC is important for homeostasis of hematopoiesis. MSC play a crucial role in the so called bone marrow niche giving rise to the majority of marrow stromal cell lineages. In vitro we investigated the impact of MSC on CD34 purified HSC expansion and differentiation demonstrating a promoting impact of MSC on adherent HSC in comparison to non adherent HSC in terms of phenotype, migration capacity and clonogenicity. Performing phase contrast microscopy and confocal microscopy we are able to distinguish HSC which are located on the surface of a MSC monolayer (phase-bright cells) and HSC which are covered by MSC monolayer (phase-dim cells). Both HSC fractions and the non-adherent cells were isolated separately by performing serial washing steps. All three fractions were analyzed at fixed time points during the first week of co-culture in term of cell cycle progression, proliferation, maturation and cell division accompanied differentiation. First we performed propidium iodide (PI) staining for cell cycle analysis revealing that the phase-bright cells contained the highest percentage of G2 cells in comparison to the non adherent cells and the phase-dim cells; 13.9 ±1.0% vs 1.3 ±1.2% vs 2.7 ±2.0%, p<0.001. The data indicate the facilitating impact of MSC on HSC in performing mitosis which is however depending on the location of interaction. When HSC are released into supernatant (non adherent cells) or covered by MSC, G2 phase was significantly down-regulated. Next we studied the proliferation capacity of the separate cell fractions. Consistent with the data of cell cycle, cell number of phase-bright faction increased much faster than the other two fractions during the first 4 days suggesting that the MSC surface in vitro is the predominant location of HSC proliferation. Next we investigated the phenotype of HSC. According to FACS analysis results (CD34+CD38-) phase-dim cells revealed a more immature phenotype in comparison to the non adherent cells and the phase-bright cells. During the first four days 80% of phase-dim cells remained CD34+CD38-, while cells of the phase-bright- and the non adherent fraction exhibited a significant more mature phenotype. Performing cell division tracking using CFSE we were able to show that over time number of divisions of phase-dim cells were significantly diminished in comparison to the other two cell fractions in co-cultures. In addition, phase-dim cells started to lose CD34 at the 7th generation, while non-adherent and phase-bright cells already lost CD34 at the 4th generation. These data suggest that “stemness” of HSC was rather preserved in the cell fraction which was covered by MSC monolayer than in the cell fraction on the surface of MSC. In conclusion we demonstrate HSC in distinct locations in vitro showing different behaviors in terms of phenotype and proliferation. It becomes evident that not only the cell to cell contact matters but also the localization of contact. Further experiments are needed to investigate NOD/SCID repopulation potential of the different cell fractions.


Sign in / Sign up

Export Citation Format

Share Document