Development of Empirical Relationships to Predict Strength of Powder Metallurgically Produced Pure Aluminium and Pure Copper Diffusion Bonded Bimetallic Joints

2015 ◽  
Vol 48 (3) ◽  
pp. 33
Author(s):  
A. Murugan ◽  
T. Senthilvelan ◽  
V. Balasubramanian
2013 ◽  
Vol 1559 ◽  
Author(s):  
Paul Gondcharton ◽  
Floriane Baudin ◽  
Lamine Benaissa ◽  
Bruno Imbert

ABSTRACTWafer level metal bonding involving copper material is widely used to achieve 3D functional integration of ICs and ensure effective packaging sealing for various applications. In this paper we focus on thermocompression bonding technology where temperature and pressure are used in parallel to assist the bonding process. More specifically a broad range of conditions was explored and interesting results were observed and are reported. Indeed, despite a relatively high roughness, the presence of a native oxide and the lack of surface preparation, there still exists a process window where wafer level bonding is allowed. In these conditions, limiting the bonding mechanisms to basic copper diffusion is no longer satisfactory. In this study, a specific scenario inspired by both wafer bonding and metal welding state of the art is put forward. Accordingly, pure copper diffusion through the bonding interface is lined with plastic deformation and metallic oxide fracture. In addition, polycrystalline film deformation due to thermomechanical stress is highlighted and grain growth and voiding formation are observed and confirmed.


2013 ◽  
Vol 773-774 ◽  
pp. 818-823 ◽  
Author(s):  
Yasunori Harada ◽  
Masayuki Nunobiki

In shot peening, bombarding the surface with steel shot propelled at high velocity causes plastic deformation of surface. The process with the characteristic deformation was applied to joining process. Our approach has been applied to the butt joining of the dissimilar metal sheets. In this method, however, the joint strength was lower than the flow stress of base metal. The modified joining processing was being carried out to improve the bondability. In the present study, the joining of dissimilar metal sheets using a shot peening process was investigated to improve the bondability. In the joined section, the edge of the joint area of the sheets were slit using a laser. In this method, the edges of the sheet are overlapped the other sheet. When the connection is peened, the material undergoes large plastic deformation near the surface due to the collision of shots. In this process, particularly noteworthy is the plastic flow near surface layer. The edges of the sheet are joined to the other sheet, thus two sheets can be joined each other. In the experiment, the shot peening treatment was performed by using an air-type peening machine. The shots used were made of high carbon cast steel. Air pressure was 0.6 MPa and peening time was in the range of 30-240s. The metal sheets were commercial low-carbon steel, stainless steel, pure aluminium, aluminium alloy, and pure copper. The effects of processing conditions on the bondability were mainly examined. It was found that the present method was effective for joining of dissimilar metal sheets.


Author(s):  
W. A. Chiou ◽  
N. Kohyama ◽  
B. Little ◽  
P. Wagner ◽  
M. Meshii

The corrosion of copper and copper alloys in a marine environment is of great concern because of their widespread use in heat exchangers and steam condensers in which natural seawater is the coolant. It has become increasingly evident that microorganisms play an important role in the corrosion of a number of metals and alloys under a variety of environments. For the past 15 years the use of SEM has proven to be useful in studying biofilms and spatial relationships between bacteria and localized corrosion of metals. Little information, however, has been obtained using TEM capitalizing on its higher spacial resolution and the transmission observation of interfaces. The research presented herein is the first step of this new approach in studying the corrosion with biological influence in pure copper.Commercially produced copper (Cu, 99%) foils of approximately 120 μm thick exposed to a copper-tolerant marine bacterium, Oceanospirillum, and an abiotic culture medium were subsampled (1 cm × 1 cm) for this study along with unexposed control samples.


Sign in / Sign up

Export Citation Format

Share Document