metallic oxide
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 96)

H-INDEX

32
(FIVE YEARS 6)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3446
Author(s):  
Mohammed Zahedul Islam Nizami ◽  
Veena W. Xu ◽  
Iris X. Yin ◽  
Ollie Y. Yu ◽  
Chun-Hung Chu

Nanoparticles based on metal and metallic oxide have become a novel trend for dental use as they interfere with bacterial metabolism and prevent biofilm formation. Metal and metal oxide nanoparticles demonstrate significant antimicrobial activity by metal ion release, oxidative stress induction and non-oxidative mechanisms. Silver, zinc, titanium, copper, and magnesium ions have been used to develop metal and metal oxide nanoparticles. In addition, fluoride has been used to functionalise the metal and metal oxide nanoparticles. The fluoride-functionalised nanoparticles show fluoride-releasing properties that enhance apatite formation, promote remineralisation, and inhibit demineralisation of enamel and dentine. The particles’ nanoscopic size increases their surface-to-volume ratio and bioavailability. The increased surface area facilitates their mechanical bond with tooth tissue. Therefore, metal and metal oxide nanoparticles have been incorporated in dental materials to strengthen the mechanical properties of the materials and to prevent caries development. Another advantage of metal and metal oxide nanoparticles is their easily scalable production. The aim of this study is to provide an overview of the use of metal and metal oxide nanoparticles in caries prevention. The study reviews their effects on dental materials regarding antibacterial, remineralising, aesthetic, and mechanical properties.


2021 ◽  
pp. 108128652110572
Author(s):  
Mohammad Rezaul Karim ◽  
Kai Kadau ◽  
Santosh Narasimhachary ◽  
Francesco Radaelli ◽  
Christian Amann ◽  
...  

We present a computational study and framework that allows us to study and understand the crack nucleation process from forging flaws. Forging flaws may be present in large steel rotor components commonly used for rotating power generation equipment including gas turbines, electrical generators, and steam turbines. The service life of these components is often limited by crack nucleation and subsequent growth from such forging flaws, which frequently exhibit themselves as non-metallic oxide inclusions. The fatigue crack growth process can be described by established engineering fracture mechanics methods. However, the initial crack nucleation process from a forging flaw is challenging for traditional engineering methods to quantify as it depends on the details of the flaw, including flaw morphology. We adopt the peridynamics method to describe and study this crack nucleation process. For a specific industrial gas turbine rotor steel, we present how we integrate and fit commonly known base material property data such as elastic properties, yield strength, and S-N curves, as well as fatigue crack growth data into a peridynamic model. The obtained model is then utilized in a series of high-performance two-dimensional peridynamic simulations to study the crack nucleation process from forging flaws for ambient and elevated temperatures in a rectangular simulation cell specimen. The simulations reveal an initial local nucleation at multiple small oxide inclusions followed by micro-crack propagation, arrest, coalescence, and eventual emergence of a dominant micro-crack that governs the crack nucleation process. The dependence on temperature and density of oxide inclusions of both the details of the microscopic processes and cycles to crack nucleation is also observed. The results are compared with fatigue experiments performed with specimens containing forging flaws of the same rotor steel.


Author(s):  
Ana Laura Paez Jerez ◽  
Lilian Davies ◽  
Alvaro Yamil Tesio ◽  
Victoria Flexer

Abstract A ternary compound was synthesized from titanium dioxide, elemental sulfur and polyacrylonitrile throughout a simple ball-milling and heating process in inert atmosphere, and was fully characterized. The novel compound belongs to the family of sulfurized polyacrylonitrile compounds (SPAN) and was incorporated as active material in the cathode of Li-S batteries. The cells achieve high and stable capacity values at 0.5 C reaching 1885 mAh/gS for the 10th cycle and ~1600 mAh/gS after 200 cycles (498 and 422 mAh/g composite, respectively). To the best of our knowledge, we are the first to report the combination of SPAN and TiO2, and to show the synergistic behaviour of these compounds. The high capacity values observed, higher than the theoretical capacity of elemental sulfur (1675 mAh/g), are explained by the extra capacity provided by the lithiation/delithiation process of TiO2. The metallic oxide also improves the overall kinetics of the redox processes in SPAN, which helped to achieve good cycling performance at 3.3 C, with a remaining capacity of 672 mAh/gS after 1400 cycles, and even at 5 C where a remaining capacity of 660 mAh/gS after 500 cycles was recorded.


2021 ◽  
Author(s):  
Benamara Maroua ◽  
Amrani Amina ◽  
Zaidi Hadjer ◽  
Sedrati Fateh ◽  
Bouroumana Selma ◽  
...  

Abstract Our study focused on the evaluation of the toxicity of copper oxide nanoparticles (CuO-NPs) on a bioindicator; the land snail Helix aspersa. Their effects were studied by a targeted approach in the laboratory, by evaluating the oxidative stress biomarkers in hepatopancreas and kidney (GSH, GST, GPx, CAT, and LPO). The snails were exposed to increasing concentrations (50, 100, 150, and 200 mg/kg) of CuO-NPs mixed in wheat flour during a sub-chronic treatment period of 45 days. Our results show that: CuO-NPs can induce oxidative stress, by producing reactive oxygen species (ROS), which was confirmed by the decrease in glutathione (GSH) level and reduction of its metabolizing enzyme glutathione-s-transferase (GST) in both organs, as they trigger the detoxification system resulting in increased activity of the glutathione peroxidase (GPx) and catalase defense enzyme and lipide peroxidation indices within the hepatopancreas.


Chemosphere ◽  
2021 ◽  
pp. 133329
Author(s):  
Ali Ahmad ◽  
Syed Salman Hashmi ◽  
José M. Palma ◽  
Francisco J. Corpas

2021 ◽  
Vol 11 (23) ◽  
pp. 11317
Author(s):  
Xia Cai ◽  
Liang Yan ◽  
Yan Li ◽  
Yutong Wu

Reliability performance, especially the lower confidence limit of reliability, plays an important role in system risk and safety assessment. A good estimator of the lower confidence limit of system reliability can help engineers to make the right decisions. Based on the lifetime of the key component in a typical satellite intelligent power distribution system, the generalized fiducial method is adopted to estimate the lower confidence limit of the system reliability in this paper. First, the generalized pivotal quantity and the lower confidence limit of reliability for the key component are derived for the lifetimes of the exponential-type and Weibull-type components. Simulations show that the sample median is more appropriate than the sample mean when the lower confidence limit of reliability is estimated. Moreover, the lower confidence limit of reliability is obtained for the typical satellite intelligent power distribution system through the pseudo-lifetime data of the metallic oxide semiconductor field effect transistor. The lower confidence limit of reliability for this power distribution system at 15 years is 0.998, which meets the factory’s reliability requirement. Finally, through the comparison, a hot standby subsystem can be substituted with a cold standby subsystem to increase the lower confidence limit of the system reliability.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 235
Author(s):  
Mohammed M. Rahman ◽  
Jahir Ahmed ◽  
Abdullah M. Asiri ◽  
Sulaiman Y.M. Alfaifi ◽  
Hadi. M. Marwani

Herein, novel Co3O4·CdO·ZnO-based tri-metallic oxide nanoparticles (CCZ) were synthesized by a simple solution method in basic phase. We have used Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscope (FESEM), Dynamic Light Scattering (DLS), Tunneling Electron Microscopy (TEM), and Energy-Dispersive Spectroscopy (EDS) techniques to characterize the CCZ nanoparticles. XRD, TEM, DLS, and FESEM investigations have confirmed the tri-metallic nanoparticles’ structure, while XPS and EDS analyses have shown the elemental compositions of the CCZ nanoparticles. Later, a Au/μ-Chip was modified with the CCZ nanoparticles using a conducting binder, PEDOT: PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) in a sol-gel system, and dried completely in air. Then, the CCZ/Au/μ-Chip sensor was used to detect methanol (MeOH) in phosphate buffer solution (PBS). Outstanding sensing performance was achieved for the CCZ/Au/μ-Chip sensor, such as excellent sensitivity (1.3842 µAµM−1cm−2), a wide linear dynamic range of 1.0 nM–2.0 mM (R2 = 0.9992), an ultra-low detection limit (32.8 ± 0.1 pM at S/N = 3), a fast response time (~11 s), and excellent reproducibility and repeatability. This CCZ/Au/μ-Chip sensor was further applied with appropriate quantification results in real environmental sample analyses.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojian Hou ◽  
Yi Song ◽  
Yueju Zhao ◽  
Wenxiu Li ◽  
Zanwu Guo ◽  
...  

Well-ordered hierarchically porous carbon (HPC) nanomaterials have been successfully synthesized by a facile, efficient, and fast heated-evaporation induced self-assembly (HISA) method. A micelle system was employed as the template by using the HISA method for the first time, which possessed great potential in the large-scale production of HPC materials. Various surfactants, including triblock copolymer Pluronic F127, P123, F108, and cationic CTAB, were used in the polymerization process as templates to reveal the relationship between the structure of surfactants and architecture of the as-prepared HPCs. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Nitrogen adsorption, and Fourier transform infrared (FTIR) measurements were conducted to investigate the morphology, structure, and components of HPCs, which further confirmed the well-ordered and uniform mesoporous structure. The as-prepared HPC sample with F127 possessed the largest specific surface area, suitable pore size, and well-ordered mesoporous structure, resulting in better electrochemical performance as electrodes in the fields of energy storage and conversion system. Doped with the metallic oxide MnO2, the MnO2/HPC composites presented the outstanding electrochemical activity in supercapacitor with a high specific capacitance of 531.2 F g−1 at 1 A g−1 and excellent cycling performance with little capacity fading, even after 5,000 cycles. Moreover, the obtained sample could also be applied in the fields of oxygen reduction reaction (ORR) for its abundant active sites and regulate architecture. This versatile approach makes the mass industrial production of HPC materials possible in electrochemical applications through a facile and fast route.


Sign in / Sign up

Export Citation Format

Share Document