scholarly journals Green H-relation of the square matrices over a local ring whose maximal ideal is generated by a nilpotent element

Author(s):  
Nan Wangyu ◽  
Yang Jiang

2019 ◽  
Vol 19 (04) ◽  
pp. 2050061
Author(s):  
Lorenzo Guerrieri

Let [Formula: see text] be a regular local ring of dimension [Formula: see text]. A local monoidal transform of [Formula: see text] is a ring of the form [Formula: see text], where [Formula: see text] is a regular parameter, [Formula: see text] is a regular prime ideal of [Formula: see text] and [Formula: see text] is a maximal ideal of [Formula: see text] lying over [Formula: see text] In this paper, we study some features of the rings [Formula: see text] obtained as infinite directed union of iterated local monoidal transforms of [Formula: see text]. In order to study when these rings are GCD domains, we also provide results in the more general setting of directed unions of GCD domains.



2021 ◽  
Vol 28 (01) ◽  
pp. 13-32
Author(s):  
Nguyen Tien Manh

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text], [Formula: see text] an ideal of [Formula: see text], [Formula: see text] an [Formula: see text]-primary ideal of [Formula: see text], [Formula: see text] a finitely generated [Formula: see text]-module, [Formula: see text] a finitely generated standard graded algebra over [Formula: see text] and [Formula: see text] a finitely generated graded [Formula: see text]-module. We characterize the multiplicity and the Cohen–Macaulayness of the fiber cone [Formula: see text]. As an application, we obtain some results on the multiplicity and the Cohen–Macaulayness of the fiber cone[Formula: see text].



1986 ◽  
Vol 102 ◽  
pp. 1-49 ◽  
Author(s):  
Ngô Viêt Trung

Throughout this paper, A denotes a noetherian local ring with maximal ideal m and M a finitely generated A-module with d: = dim M≥1.



1972 ◽  
Vol 45 ◽  
pp. 1-38 ◽  
Author(s):  
David Meredith

Throughout this paper, (R, m) denotes a (noetherian) local ring R with maximal ideal m.In [5], Monsky and Washnitzer define weakly complete R-algebras with respect to m. In brief, an R-algebra A† is weakly complete if



2020 ◽  
Vol 63 (1) ◽  
pp. 1-5
Author(s):  
OLGUR CELIKBAS ◽  
RYO TAKAHASHI

AbstractWe prove that each positive power of the maximal ideal of a commutative Noetherian local ring is Tor-rigid and strongly rigid. This gives new characterizations of regularity and, in particular, shows that such ideals satisfy the torsion condition of a long-standing conjecture of Huneke and Wiegand.



2016 ◽  
Vol 16 (09) ◽  
pp. 1750163
Author(s):  
Rasoul Ahangari Maleki

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text] and residue field [Formula: see text]. The linearity defect of a finitely generated [Formula: see text]-module [Formula: see text], which is denoted [Formula: see text], is a numerical measure of how far [Formula: see text] is from having linear resolution. We study the linearity defect of the residue field. We give a positive answer to the question raised by Herzog and Iyengar of whether [Formula: see text] implies [Formula: see text], in the case when [Formula: see text].



1981 ◽  
Vol 24 (4) ◽  
pp. 423-431 ◽  
Author(s):  
Ferruccio Orecchia

AbstractLet A be the local ring at a singular point p of an algebraic reduced curve. Let M (resp. Ml,..., Mh) be the maximal ideal of A (resp. of Ā). In this paper we want to classify ordinary singularities p with reduced tangent cone: Spec(G(A)). We prove that G(A) is reduced if and only if: p is an ordinary singularity, and the vector spaces span the vector space . If the points of the projectivized tangent cone Proj(G(A)) are in generic position then p is an ordinary singularity if and only if G(A) is reduced. We give an example which shows that the preceding equivalence is not true in general.



Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 702 ◽  
Author(s):  
Marek Jukl

This article is devoted to the projective Klingenberg spaces over a local ring, which is a linear algebra generated by one nilpotent element. In this case, subspaces of such Klingenberg spaces are described. The notion of the “degree of neighborhood” is introduced. Using this, we present the geometric description of subsets of points of a projective Klingenberg space whose arithmetical representatives need not belong to a free submodule.



1990 ◽  
Vol 120 ◽  
pp. 77-88 ◽  
Author(s):  
Nguyen Tu Cuong

Throughout this note, A denotes a commutative local Noetherian ring with maximal ideal m and M a finitely generated A-module with dim (M) = d. Let x1, …, xd be a system of parameters (s.o.p. for short) for M and I the ideal of A generated by x1, …, xd.



Author(s):  
Steven Duplij ◽  
Wend Werner

Abstract We investigate fields in which addition requires three summands. These ternary fields are shown to be isomorphic to the set of invertible elements in a local ring $$\mathcal{R}$$ R having $$\mathbb{Z}\diagup 2\mathbb{Z}$$ Z / 2 Z as a residual field. One of the important technical ingredients is to intrinsically characterize the maximal ideal of $$\mathcal{R}$$ R . We include a number of illustrative examples and prove that the structure of a finite 3‑field is not connected to any binary field.



Sign in / Sign up

Export Citation Format

Share Document