scholarly journals Families of optimal multipoint methods for solving nonlinear equations: A survey

2010 ◽  
Vol 4 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Miodrag Petkovic ◽  
Ljiljana Petkovic

Multipoint iterative root-solvers belong to the class of the most powerful methods for solving nonlinear equations since they overcome theoretical limits of one-point methods concerning the convergence order and computational efficiency. Although the construction of these methods has occurred in the 1960s, their rapid development have started in the first decade of the 21-st century. The most important class of multipoint methods are optimal methods which attain the convergence order 2n using n + 1 function evaluations per iteration. In this paper we give a review of optimal multipoint methods of the order four (n = 2), eight (n = 3) and higher (n > 3), some of which being proposed by the authors. All of them possess as high as possible computational efficiency in the sense of the Kung-Traub hypothesis (1974). Numerical examples are included to demonstrate a very fast convergence of the presented optimal multipoint methods.

2011 ◽  
Vol 5 (2) ◽  
pp. 298-317 ◽  
Author(s):  
Miodrag Petkovic ◽  
Jovana Dzunic ◽  
Ljiljana Petkovic

An efficient family of two-point derivative free methods with memory for solving nonlinear equations is presented. It is proved that the convergence order of the proposed family is increased from 4 to at least 2 + ?6 ? 4.45, 5, 1/2 (5 + ?33) ? 5.37 and 6, depending on the accelerating technique. The increase of convergence order is attained using a suitable accelerating technique by varying a free parameter in each iteration. The improvement of convergence rate is achieved without any additional function evaluations meaning that the proposed methods with memory are very efficient. Moreover, the presented methods are more efficient than all existing methods known in literature in the class of two-point methods and three-point methods of optimal order eight. Numerical examples and the comparison with the existing two-point methods are included to confirm theoretical results and high computational efficiency. 2010 Mathematics Subject Classification. 65H05


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract In the present paper, we study the local convergence analysis of a fifth convergence order method considered by Sharma and Guha in [15] to solve equations in Banach space. Using our idea of restricted convergence domains we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.


2019 ◽  
Vol 17 (08) ◽  
pp. 1950047
Author(s):  
Rajni Sharma ◽  
Janak Raj Sharma ◽  
Nitin Kalra

In this work, a modified Newton–Özban composition of convergence order six for solving nonlinear systems is presented. The first two steps of proposed scheme are based on third-order method given by Özban [Özban, A. Y. [2004] “Some new variants of Newton’s method,” Appl. Math. Lett. 17, 677–682.] for solving scalar equations. Computational efficiency of the presented method is discussed and compared with well-known existing methods. Numerical examples are studied to demonstrate the accuracy of the proposed method. The basins of attraction of some of the existing methods along with the proposed method are given to exhibit their performance.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1020
Author(s):  
Syahmi Afandi Sariman ◽  
Ishak Hashim ◽  
Faieza Samat ◽  
Mohammed Alshbool

In this study, we propose an extension of the modified Newton-Househölder methods to find multiple roots with unknown multiplicity of nonlinear equations. With four functional evaluations per iteration, the proposed method achieves an optimal eighth order of convergence. The higher the convergence order, the quicker we get to the root with a high accuracy. The numerical examples have shown that this scheme can compete with the existing methods. This scheme is also stable across all of the functions tested based on the graphical basins of attraction.


2021 ◽  
Vol 5 (1) ◽  
pp. 94-100
Author(s):  
U. K. Qureshi ◽  
◽  
A. A. Shaikhi ◽  
F. K. Shaikh ◽  
S. K. Hazarewal ◽  
...  

Finding root of a nonlinear equation is one of the most important problems in the real world, which arises in the applied sciences and engineering. The researchers developed many numerical methods for estimating roots of nonlinear equations. The this paper, we proposed a new Simpson type method with the help of Simpson 1/3rd rule. It has been proved that the convergence order of the proposed method is two. Some numerical examples are solved to validate the proposed method by using C++/MATLAB and EXCEL. The performance of proposed method is better than the existing ones.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Tianbao Liu ◽  
Hengyan Li

We present and analyze some variants of Cauchy's methods free from second derivative for obtaining simple roots of nonlinear equations. The convergence analysis of the methods is discussed. It is established that the methods have convergence order three. Per iteration the new methods require two function and one first derivative evaluations. Numerical examples show that the new methods are comparable with the well-known existing methods and give better numerical results in many aspects.


2011 ◽  
Vol 08 (04) ◽  
pp. 705-730 ◽  
Author(s):  
G. Y. ZHANG ◽  
G. R. LIU

This paper presents two novel and effective cell-based smoothed point interpolation methods (CS-PIM) using isoparametric PIM (PIM-Iso) shape functions and condensed radial PIM (RPIM-Cd) shape functions respectively. These two types of PIM shape functions can successfully overcome the singularity problem occurred in the process of creating PIM shape functions and make the constructed CS-PIM models work well with the three-node triangular meshes. Smoothed strains are obtained by performing the generalized gradient smoothing operation over each triangular background cells, because the nodal PIM shape functions can be discontinuous. The generalized smoothed Galerkin (GS-Galerkin) weakform is used to create the discretized system equations. Some numerical examples are studied to examine various properties of the present methods in terms of accuracy, convergence, and computational efficiency.


2012 ◽  
Vol 268-270 ◽  
pp. 1416-1421
Author(s):  
Yu Hui Zhang ◽  
Li Wen Guan ◽  
Li Ping Wang ◽  
Yong Zhi Hua

The forward kinematics analysis of parallel manipulator is a difficult issue, which has been studied by many researchers recently. In this paper, in order to solve the difficult issue, a new computing method with higher calculation accuracy, good operation steadiness and faster speed is mentioned. Firstly, the mathematical model of direct kinematics of the Stewart platform is founded, which is nonlinear equations. Secondly, with the rapid development of artificial intelligence technology, Memetic algorithms (MA) are applied to solve the systems of nonlinear equations more and more, replacing the traditional algorithms. MA is a kind of meta-heuristic algorithm combined genetic algorithms (GA) with local search at the end of iteration. Finally, the validity of this algorithm has been testified by simulating iteration operation. The numerical simulation shows that MA can surely and rapidly get global optimum solution and greatly improve convergence rate. Thereby, MA can be widely used as a general-purpose algorithm for solving the forward kinematics of parallel mechanism.


2018 ◽  
Vol 34 (1) ◽  
pp. 85-92
Author(s):  
ION PAVALOIU ◽  

We consider an Aitken-Steffensen type method in which the nodes are controlled by Newton and two-step Newton iterations. We prove a local convergence result showing the q-convergence order 7 of the iterations. Under certain supplementary conditions, we obtain monotone convergence of the iterations, providing an alternative to the usual ball attraction theorems. Numerical examples show that this method may, in some cases, have larger (possibly sided) convergence domains than other methods with similar convergence orders.


2019 ◽  
Vol 4 (2) ◽  
pp. 34
Author(s):  
Deasy Wahyuni ◽  
Elisawati Elisawati

Newton method is one of the most frequently used methods to find solutions to the roots of nonlinear equations. Along with the development of science, Newton's method has undergone various modifications. One of them is the hasanov method and the newton method variant (vmn), with a higher order of convergence. In this journal focuses on the three-step iteration method in which the order of convergence is higher than the three methods. To find the convergence order of the three-step iteration method requires a program that can support the analytical results of both methods. One of them using the help of the matlab program. Which will then be compared with numerical simulations also using the matlab program.  Keywords : newton method, newton method variant, Hasanov Method and order of convergence


Sign in / Sign up

Export Citation Format

Share Document