A Modified Newton–Özban Composition for Solving Nonlinear Systems

2019 ◽  
Vol 17 (08) ◽  
pp. 1950047
Author(s):  
Rajni Sharma ◽  
Janak Raj Sharma ◽  
Nitin Kalra

In this work, a modified Newton–Özban composition of convergence order six for solving nonlinear systems is presented. The first two steps of proposed scheme are based on third-order method given by Özban [Özban, A. Y. [2004] “Some new variants of Newton’s method,” Appl. Math. Lett. 17, 677–682.] for solving scalar equations. Computational efficiency of the presented method is discussed and compared with well-known existing methods. Numerical examples are studied to demonstrate the accuracy of the proposed method. The basins of attraction of some of the existing methods along with the proposed method are given to exhibit their performance.

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
J. P. Jaiswal

The object of the present work is to give the new class of third- and fourth-order iterative methods for solving nonlinear equations. Our proposed third-order method includes methods of Weerakoon and Fernando (2000), Homeier (2005), and Chun and Kim (2010) as particular cases. The multivariate extension of some of these methods has been also deliberated. Finally, some numerical examples are given to illustrate the performances of our proposed methods by comparing them with some well existing third- and fourth-order methods. The efficiency of our proposed fourth-order method over some fourth-order methods is also confirmed by basins of attraction.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Janak Raj Sharma ◽  
Puneet Gupta

We present iterative methods of convergence order three, five, and six for solving systems of nonlinear equations. Third-order method is composed of two steps, namely, Newton iteration as the first step and weighted-Newton iteration as the second step. Fifth and sixth-order methods are composed of three steps of which the first two steps are same as that of the third-order method whereas the third is again a weighted-Newton step. Computational efficiency in its general form is discussed and a comparison between the efficiencies of proposed techniques with existing ones is made. The performance is tested through numerical examples. Moreover, theoretical results concerning order of convergence and computational efficiency are verified in the examples. It is shown that the present methods have an edge over similar existing methods, particularly when applied to large systems of equations.


2010 ◽  
Vol 4 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Miodrag Petkovic ◽  
Ljiljana Petkovic

Multipoint iterative root-solvers belong to the class of the most powerful methods for solving nonlinear equations since they overcome theoretical limits of one-point methods concerning the convergence order and computational efficiency. Although the construction of these methods has occurred in the 1960s, their rapid development have started in the first decade of the 21-st century. The most important class of multipoint methods are optimal methods which attain the convergence order 2n using n + 1 function evaluations per iteration. In this paper we give a review of optimal multipoint methods of the order four (n = 2), eight (n = 3) and higher (n > 3), some of which being proposed by the authors. All of them possess as high as possible computational efficiency in the sense of the Kung-Traub hypothesis (1974). Numerical examples are included to demonstrate a very fast convergence of the presented optimal multipoint methods.


2017 ◽  
Vol 51 (1) ◽  
pp. 1-14
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a local convergence analysis for a family of Steffensen-type third-order methods in order to approximate a solution of a nonlinear equation. We use hypothesis up to the first derivative in contrast to earlier studies such as [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] using hypotheses up to the fourth derivative. This way the applicability of these methods is extended under weaker hypothesis. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract In the present paper, we study the local convergence analysis of a fifth convergence order method considered by Sharma and Guha in [15] to solve equations in Banach space. Using our idea of restricted convergence domains we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.


2020 ◽  
Vol 37 (1-2) ◽  
pp. 14-29
Author(s):  
Prem Bahadur Chand

In this paper, using the variant of Frontini-Sormani method, some higher order methods for finding the roots (simple and multiple) of nonlinear equations are proposed. In particular, we have constructed an optimal fourth order method and a family of sixth order method for finding a simple root. Further, an optimal fourth order method for finding a multiple root of a nonlinear equation is also proposed. We have used different weight functions to a cubically convergent For ntini-Sormani method for the construction of these methods. The proposed methods are tested on numerical examples and compare the results with some existing methods. Further, we have presented the basins of attraction of these methods to understand their dynamics visually.


2019 ◽  
Vol 13 (2) ◽  
pp. 399-422
Author(s):  
Miodrag Petkovic ◽  
Ljiljana Petkovic ◽  
Beny Neta

Generalized Halley-like one-parameter families of order three and four for finding multiple root of a nonlinear equation are constructed and studied. This presentation is, actually, a mixture of theoretical results, algorithmic aspects, numerical experiments, and computer graphics. Starting from the proposed class of third order methods and using an accelerating procedure, we construct a new fourth order family of Halley's type. To analyze convergence behavior of two presented families, we have used two methodologies: (i) testing by numerical examples and (ii) dynamic study using basins of attraction.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1020
Author(s):  
Syahmi Afandi Sariman ◽  
Ishak Hashim ◽  
Faieza Samat ◽  
Mohammed Alshbool

In this study, we propose an extension of the modified Newton-Househölder methods to find multiple roots with unknown multiplicity of nonlinear equations. With four functional evaluations per iteration, the proposed method achieves an optimal eighth order of convergence. The higher the convergence order, the quicker we get to the root with a high accuracy. The numerical examples have shown that this scheme can compete with the existing methods. This scheme is also stable across all of the functions tested based on the graphical basins of attraction.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 942 ◽  
Author(s):  
Prem B. Chand ◽  
Francisco I. Chicharro ◽  
Neus Garrido ◽  
Pankaj Jain

In this paper, using the idea of weight functions on the Potra–Pták method, an optimal fourth order method, a non optimal sixth order method, and a family of optimal eighth order methods are proposed. These methods are tested on some numerical examples, and the results are compared with some known methods of the corresponding order. It is proved that the results obtained from the proposed methods are compatible with other methods. The proposed methods are tested on some problems related to engineering and science. Furthermore, applying these methods on quadratic and cubic polynomials, their stability is analyzed by means of their basins of attraction.


2021 ◽  
Vol 66 (4) ◽  
pp. 757-768
Author(s):  
Ioannis K. Argyros ◽  
◽  
Santhosh George ◽  
Kedarnath Senapati ◽  
◽  
...  

We present the local convergence of a Newton-type solver for equations involving Banach space valued operators. The eighth order of convergence was shown earlier in the special case of the k-dimensional Euclidean space, using hypotheses up to the eighth derivative although these derivatives do not appear in the method. We show convergence using only the rst derivative. This way we extend the applicability of the methods. Numerical examples are used to show the convergence conditions. Finally, the basins of attraction of the method, on some test problems are presented.


Sign in / Sign up

Export Citation Format

Share Document