scholarly journals The upper connected vertex detour number of a graph

Filomat ◽  
2012 ◽  
Vol 26 (2) ◽  
pp. 379-388 ◽  
Author(s):  
A.P. Santhakumaran ◽  
P. Titus

For vertices x and y in a connected graph G = (V, E) of order at least two, the detour distance D(x, y) is the length of the longest x ? y path in G: An x ? y path of length D(x, y) is called an x ? y detour. For any vertex x in G, a set S ? V is an x-detour set of G if each vertex v ? V lies on an x ? y detour for some element y in S: The minimum cardinality of an x-detour set of G is defined as the x-detour number of G; denoted by dx(G): An x-detour set of cardinality dx(G) is called a dx-set of G: A connected x-detour set of G is an x-detour set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected x-detour set of G is the connected x-detour number of G and is denoted by cdx(G). A connected x-detour set of cardinality cdx(G) is called a cdx-set of G. A connected x-detour set Sx is called a minimal connected x-detour set if no proper subset of Sx is a connected x-detour set. The upper connected x-detour number, denoted by cd+ x (G), is defined as the maximum cardinality of a minimal connected x-detour set of G: We determine bounds for cd+ x (G) and find the same for some special classes of graphs. For any three integers a; b and c with 2 ? a < b ? c, there is a connected graph G with dx(G) = a; cdx(G) = b and cd+ x (G) = c for some vertex x in G: It is shown that for positive integers R,D and n ? 3 with R < D ? 2R; there exists a connected graph G with detour radius R; detour diameter D and cd+ x (G) = n for some vertex x in G.

For a connected graph a monophonic set of is said to be a complement connected monophonic set if or the subgraph is connected. The minimum cardinality of a complement connected monophonic set of is the complement connected monophonic number of and is denoted by A complement connected monophonic set in a connected graph is called a minimal complement connected monophonic set if no proper subset of is a complement connected monophonic set of . The upper complement connected monophonic number of is the maximum cardinality of a minimal complement connected monophonic set of . Some general properties under this concept are studied. The upper complement connected monophonic number of some standard graphs are determined. Some of its general properties are studied. It is shown that for any positive integers 2 ≤ a ≤b, there exists a connected graph such that ( ) = a and ( ) =b


Filomat ◽  
2012 ◽  
Vol 26 (1) ◽  
pp. 131-141 ◽  
Author(s):  
A.P. Santhakumaran ◽  
J. John

For a non-trivial connected graph G, a set S ? V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets and any edge geodetic set of order g1(G) is an edge geodetic basis. A connected edge geodetic set of G is an edge geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected edge geodetic set of G is the connected edge geodetic number of G and is denoted by g1c(G). A connected edge geodetic set of cardinality g1c(G) is called a g1c- set of G or connected edge geodetic basis of G. A connected edge geodetic set S in a connected graph G is called a minimal connected edge geodetic set if no proper subset of S is a connected edge geodetic set of G. The upper connected edge geodetic number g+ 1c(G) is the maximum cardinality of a minimal connected edge geodetic set of G. Graphs G of order p for which g1c(G) = g+1c = p are characterized. For positive integers r,d and n ( d + 1 with r ? d ? 2r, there exists a connected graph of radius r, diameter d and upper connected edge geodetic number n. It is shown for any positive integers 2 ? a < b ? c, there exists a connected graph G such that g1(G) = a; g1c(G) = b and g+ 1c(G) = c.


2020 ◽  
Vol 39 (6) ◽  
pp. 1627-1647
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph G = (V, E) is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbor in D. A set D is called a global dominating set in G if S is a dominating set of both G and Ḡ. A set S is called a geodetic global dominating set of G if S is both geodetic and global dominating set of G. A geodetic global dominating set S in G is called a minimal geodetic global dominating set if no proper subset of S is itself a geodetic global dominating set in G. The maximum cardinality of a minimal geodetic global dominating set in G is the upper geodetic global domination number Ῡg+(G) of G. In this paper, the upper geodetic global domination number of certain connected graphs are determined and some of the general properties are studied. It is proved that for all positive integers a, b, p where 3 ≤ a ≤ b < p, there exists a connected graph G such that Ῡg(G) = a, Ῡg+(G) = b and |V (G)| = p.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050004
Author(s):  
J. John ◽  
M. S. Malchijah Raj

A Steiner set [Formula: see text] of a connected graph [Formula: see text] of order [Formula: see text] is a restrained Steiner set if either [Formula: see text] or the subgraph [Formula: see text] has no isolated vertices. The minimum cardinality of a restrained Steiner set of [Formula: see text] is the restrained Steiner number of [Formula: see text], and is denoted by [Formula: see text]. A restrained Steiner set [Formula: see text] in a connected graph [Formula: see text] is called a minimal restrained Steiner set if no proper subset of [Formula: see text] is a restrained Steiner set of [Formula: see text]. The upper restrained Steiner number [Formula: see text] is the maximum cardinality of a minimal restrained Steiner set of [Formula: see text]. The upper restrained Steiner number of certain classes of graphs are determined. Connected graphs of order [Formula: see text] with upper restrained Steiner number [Formula: see text] or [Formula: see text] are characterized. It is shown that for every pair of integers [Formula: see text] and [Formula: see text], with [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text]. Also, it is shown that for every pair of integers [Formula: see text] and [Formula: see text] with [Formula: see text] there exists a connected graph [Formula: see text] with [Formula: see text] and [Formula: see text], where [Formula: see text] is the upper restrained geodetic number of the graph [Formula: see text].


Author(s):  
J. John ◽  
V. R. Sunil Kumar

A set [Formula: see text] is called an open detour set of [Formula: see text] if for each vertex [Formula: see text] in [Formula: see text], either (1) [Formula: see text] is a detour simplicial vertex of [Formula: see text] and [Formula: see text] or (2) [Formula: see text] is an internal vertex of an [Formula: see text]-[Formula: see text] detour for some [Formula: see text]. An open detour set of minimum cardinality is called a minimum open detour set and this cardinality is the open detour number of [Formula: see text], denoted by [Formula: see text]. Connected graphs of order [Formula: see text] with open detour number [Formula: see text] or [Formula: see text] are characterized. It is shown that for any two positive integers [Formula: see text] and [Formula: see text] with [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the detour number of [Formula: see text]. It is also shown that for every pair of positive integers [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the open geodetic number of [Formula: see text].


Author(s):  
S. Sethu Ramalingam ◽  
S. Athisayanathan

For any two vertices [Formula: see text] and [Formula: see text] in a connected graph [Formula: see text], the [Formula: see text] path [Formula: see text] is called a [Formula: see text] triangle free path if no three vertices of [Formula: see text] induce a triangle. The triangle free detour distance [Formula: see text] is the length of a longest [Formula: see text] triangle free path in [Formula: see text]. A [Formula: see text] path of length [Formula: see text] is called a [Formula: see text] triangle free detour. A set [Formula: see text] is called a triangle free detour set of [Formula: see text] if every vertex of [Formula: see text] lies on a [Formula: see text] triangle free detour joining a pair of vertices of [Formula: see text]. The triangle free detour number [Formula: see text] of [Formula: see text] is the minimum order of its triangle free detour sets and any triangle free detour set of order [Formula: see text] is a triangle free detour basis of [Formula: see text]. A triangle free detour set [Formula: see text] of [Formula: see text] is called a minimal triangle free detour set if no proper subset of [Formula: see text] is a triangle free detour set of [Formula: see text]. The upper triangle free detour number [Formula: see text] of [Formula: see text] is the maximum order of its minimal triangle free detour sets and any minimal triangle free detour set of order [Formula: see text] is an upper triangle free detour basis of [Formula: see text]. We determine bounds for it and characterize graphs which realize these bounds. For any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text]. Also, for any four positive integers [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] with [Formula: see text], it is shown that there exists a connected graph [Formula: see text] such that [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], where [Formula: see text] is the upper detour number, [Formula: see text] is the upper detour monophonic number and [Formula: see text] is the upper geodetic number of a graph [Formula: see text].


2021 ◽  
Vol 40 (3) ◽  
pp. 635-658
Author(s):  
J. John ◽  
V. Sujin Flower

Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E(G) is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to-edge geodetic domination number γgee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets. Some general properties satisfied by this concept are studied. Connected graphs of size m with edge-to-edge geodetic domination number 2 or m or m − 1 are characterized. We proved that if G is a connected graph of size m ≥ 4 and Ḡ is also connected, then 4 ≤ γgee(G) + γgee(Ḡ) ≤ 2m − 2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a, b with 2 ≤ a ≤ b, there exists a connected graph G with gee(G) = a and γgee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ≤ b, there exists a connected graph G with γe(G) = a and γgee(G) = b, where γe(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050029
Author(s):  
R. Lenin

A set [Formula: see text] is a near geodetic set if for every [Formula: see text] in [Formula: see text] there exist some [Formula: see text] in [Formula: see text] with [Formula: see text] The near geodetic number [Formula: see text] is the minimum cardinality of a near geodetic set in [Formula: see text] A subset [Formula: see text] of a minimum near geodetic set [Formula: see text] is called the forcing subset of [Formula: see text] if [Formula: see text] is the unique minimum near geodetic set containing [Formula: see text]. The forcing number [Formula: see text] of [Formula: see text] in [Formula: see text] is the minimum cardinality of a forcing subset for [Formula: see text], while the forcing near geodetic number [Formula: see text] of [Formula: see text] is the smallest forcing number among all minimum near geodetic sets of [Formula: see text]. In this paper, we initiate the study of forcing near geodetic number of connected graphs. We characterize graphs with [Formula: see text]. Further, we compare the parameters geodetic number[Formula: see text] near geodetic number[Formula: see text] forcing near geodetic number and we proved that, for every positive integers [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], there exists a nontrivial connected graph [Formula: see text] with [Formula: see text] [Formula: see text] and [Formula: see text].


2019 ◽  
Vol 12 (3) ◽  
pp. 978-998
Author(s):  
Ferdinand P. Jamil ◽  
Hearty Nuenay Maglanque

Let $G$ be a connected graph. A cost effective dominating set in a graph $G$ is any set $S$ of vertices in $G$ satisfying the condition that each vertex in $S$ is adjacent to at least as many vertices outside $S$ as inside $S$ and every vertex outside $S$ is adjacent to at least one vertex in $S$. The minimum cardinality of a cost effective dominating set is the cost effective domination number of $G$. The maximum cardinality of a cost effective dominating set is the upper cost effective domination number of $G$. A cost effective dominating set is said to be minimal if it does not contain a proper subset which is itself a cost effective dominating in $G$. The maximum cardinality of a minimal cost effective dominating set in a graph $G$ is the minimal cost effective domination number of $G$.In this paper, we characterized the cost effective dominating sets in the join, corona and composition of graphs. As direct consequences, we the bounds or the exact cost effective domination numbers, minimal cost effective domination numbers and upper cost effective domination numbers of these graphs were obtained.


2021 ◽  
Vol 14 (2) ◽  
pp. 537-550
Author(s):  
Hearty Nuenay Maglanque ◽  
Ferdinand P. Jamil

Given a connected graph $G$, we say that $S\subseteq V(G)$ is a cost effective dominating set in $G$ if, each vertex in $S$ is adjacent to at least as many vertices outside $S$ as inside $S$ and that every vertex outside $S$ is adjacent to at least one vertex in $S$. The minimum cardinality of a cost effective dominating set is the cost effective domination number of $G$. The maximum cardinality of a cost effective dominating set is the upper cost effective domination number of $G$, and is denoted by $\gamma_{ce}^+(G).$ A cost effective dominating set is said to be minimal if it does not contain a proper subset which is itself a cost effective dominating in $G$. The maximum cardinality of a minimal cost effective dominating set in a graph $G$ is the minimal cost effective domination number of $G$, and is denoted by $\gamma_{mce}(G)$. In this paper we provide bounds on upper cost effective domination number and minimal cost effective domination number of a connected graph G and characterized those graphs whose upper and minimal cost effective domination numbers are either $1, 2$ or $n-1.$ We also establish a Nordhaus-Gaddum type result for the introduced parameters and solve some realization problems.


Sign in / Sign up

Export Citation Format

Share Document