scholarly journals On the upper geodetic global domination number of a graph

2020 ◽  
Vol 39 (6) ◽  
pp. 1627-1647
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph G = (V, E) is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbor in D. A set D is called a global dominating set in G if S is a dominating set of both G and Ḡ. A set S is called a geodetic global dominating set of G if S is both geodetic and global dominating set of G. A geodetic global dominating set S in G is called a minimal geodetic global dominating set if no proper subset of S is itself a geodetic global dominating set in G. The maximum cardinality of a minimal geodetic global dominating set in G is the upper geodetic global domination number Ῡg+(G) of G. In this paper, the upper geodetic global domination number of certain connected graphs are determined and some of the general properties are studied. It is proved that for all positive integers a, b, p where 3 ≤ a ≤ b < p, there exists a connected graph G such that Ῡg(G) = a, Ῡg+(G) = b and |V (G)| = p.

2021 ◽  
Vol 40 (3) ◽  
pp. 635-658
Author(s):  
J. John ◽  
V. Sujin Flower

Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E(G) is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to-edge geodetic domination number γgee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets. Some general properties satisfied by this concept are studied. Connected graphs of size m with edge-to-edge geodetic domination number 2 or m or m − 1 are characterized. We proved that if G is a connected graph of size m ≥ 4 and Ḡ is also connected, then 4 ≤ γgee(G) + γgee(Ḡ) ≤ 2m − 2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a, b with 2 ≤ a ≤ b, there exists a connected graph G with gee(G) = a and γgee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ≤ b, there exists a connected graph G with γe(G) = a and γgee(G) = b, where γe(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050043
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph [Formula: see text] is called a geodetic set if every vertex not in [Formula: see text] lies on a shortest path between two vertices from [Formula: see text]. A set [Formula: see text] of vertices in [Formula: see text] is called a dominating set of [Formula: see text] if every vertex not in [Formula: see text] has at least one neighbor in [Formula: see text]. A set [Formula: see text] is called a geodetic global dominating set of [Formula: see text] if [Formula: see text] is both geodetic and global dominating set of [Formula: see text]. The geodetic global domination number is the minimum cardinality of a geodetic global dominating set in [Formula: see text]. In this paper, we determine the geodetic global domination number of the corona and strong products of two graphs.


2020 ◽  
Vol 8 (5) ◽  
pp. 4579-4583

A set S of vertices in a connected graph is called a geodetic set if every vertex not in lies on a shortest path between two vertices from . A set of vertices in is called a dominating set of if every vertex not in has at least one neighbor in . A set is called a geodetic global dominating set of if is both geodetic and global dominating set of . The geodetic global dominating number is the minimum cardinality of a geodetic global dominating set in . In this paper we determine the geodetic global domination number of the join of two graphs.


For a connected graph a monophonic set of is said to be a complement connected monophonic set if or the subgraph is connected. The minimum cardinality of a complement connected monophonic set of is the complement connected monophonic number of and is denoted by A complement connected monophonic set in a connected graph is called a minimal complement connected monophonic set if no proper subset of is a complement connected monophonic set of . The upper complement connected monophonic number of is the maximum cardinality of a minimal complement connected monophonic set of . Some general properties under this concept are studied. The upper complement connected monophonic number of some standard graphs are determined. Some of its general properties are studied. It is shown that for any positive integers 2 ≤ a ≤b, there exists a connected graph such that ( ) = a and ( ) =b


Filomat ◽  
2012 ◽  
Vol 26 (1) ◽  
pp. 131-141 ◽  
Author(s):  
A.P. Santhakumaran ◽  
J. John

For a non-trivial connected graph G, a set S ? V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets and any edge geodetic set of order g1(G) is an edge geodetic basis. A connected edge geodetic set of G is an edge geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected edge geodetic set of G is the connected edge geodetic number of G and is denoted by g1c(G). A connected edge geodetic set of cardinality g1c(G) is called a g1c- set of G or connected edge geodetic basis of G. A connected edge geodetic set S in a connected graph G is called a minimal connected edge geodetic set if no proper subset of S is a connected edge geodetic set of G. The upper connected edge geodetic number g+ 1c(G) is the maximum cardinality of a minimal connected edge geodetic set of G. Graphs G of order p for which g1c(G) = g+1c = p are characterized. For positive integers r,d and n ( d + 1 with r ? d ? 2r, there exists a connected graph of radius r, diameter d and upper connected edge geodetic number n. It is shown for any positive integers 2 ? a < b ? c, there exists a connected graph G such that g1(G) = a; g1c(G) = b and g+ 1c(G) = c.


Filomat ◽  
2012 ◽  
Vol 26 (2) ◽  
pp. 379-388 ◽  
Author(s):  
A.P. Santhakumaran ◽  
P. Titus

For vertices x and y in a connected graph G = (V, E) of order at least two, the detour distance D(x, y) is the length of the longest x ? y path in G: An x ? y path of length D(x, y) is called an x ? y detour. For any vertex x in G, a set S ? V is an x-detour set of G if each vertex v ? V lies on an x ? y detour for some element y in S: The minimum cardinality of an x-detour set of G is defined as the x-detour number of G; denoted by dx(G): An x-detour set of cardinality dx(G) is called a dx-set of G: A connected x-detour set of G is an x-detour set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected x-detour set of G is the connected x-detour number of G and is denoted by cdx(G). A connected x-detour set of cardinality cdx(G) is called a cdx-set of G. A connected x-detour set Sx is called a minimal connected x-detour set if no proper subset of Sx is a connected x-detour set. The upper connected x-detour number, denoted by cd+ x (G), is defined as the maximum cardinality of a minimal connected x-detour set of G: We determine bounds for cd+ x (G) and find the same for some special classes of graphs. For any three integers a; b and c with 2 ? a < b ? c, there is a connected graph G with dx(G) = a; cdx(G) = b and cd+ x (G) = c for some vertex x in G: It is shown that for positive integers R,D and n ? 3 with R < D ? 2R; there exists a connected graph G with detour radius R; detour diameter D and cd+ x (G) = n for some vertex x in G.


2019 ◽  
Vol 12 (3) ◽  
pp. 978-998
Author(s):  
Ferdinand P. Jamil ◽  
Hearty Nuenay Maglanque

Let $G$ be a connected graph. A cost effective dominating set in a graph $G$ is any set $S$ of vertices in $G$ satisfying the condition that each vertex in $S$ is adjacent to at least as many vertices outside $S$ as inside $S$ and every vertex outside $S$ is adjacent to at least one vertex in $S$. The minimum cardinality of a cost effective dominating set is the cost effective domination number of $G$. The maximum cardinality of a cost effective dominating set is the upper cost effective domination number of $G$. A cost effective dominating set is said to be minimal if it does not contain a proper subset which is itself a cost effective dominating in $G$. The maximum cardinality of a minimal cost effective dominating set in a graph $G$ is the minimal cost effective domination number of $G$.In this paper, we characterized the cost effective dominating sets in the join, corona and composition of graphs. As direct consequences, we the bounds or the exact cost effective domination numbers, minimal cost effective domination numbers and upper cost effective domination numbers of these graphs were obtained.


2021 ◽  
Vol 14 (2) ◽  
pp. 537-550
Author(s):  
Hearty Nuenay Maglanque ◽  
Ferdinand P. Jamil

Given a connected graph $G$, we say that $S\subseteq V(G)$ is a cost effective dominating set in $G$ if, each vertex in $S$ is adjacent to at least as many vertices outside $S$ as inside $S$ and that every vertex outside $S$ is adjacent to at least one vertex in $S$. The minimum cardinality of a cost effective dominating set is the cost effective domination number of $G$. The maximum cardinality of a cost effective dominating set is the upper cost effective domination number of $G$, and is denoted by $\gamma_{ce}^+(G).$ A cost effective dominating set is said to be minimal if it does not contain a proper subset which is itself a cost effective dominating in $G$. The maximum cardinality of a minimal cost effective dominating set in a graph $G$ is the minimal cost effective domination number of $G$, and is denoted by $\gamma_{mce}(G)$. In this paper we provide bounds on upper cost effective domination number and minimal cost effective domination number of a connected graph G and characterized those graphs whose upper and minimal cost effective domination numbers are either $1, 2$ or $n-1.$ We also establish a Nordhaus-Gaddum type result for the introduced parameters and solve some realization problems.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750006 ◽  
Author(s):  
J. John ◽  
N. Arianayagam

For a connected graph [Formula: see text], a set [Formula: see text] is called a detour dominating set of [Formula: see text], if [Formula: see text] is a detour set and dominating set of [Formula: see text]. The detour domination number [Formula: see text] of [Formula: see text] is the minimum order of its detour dominating sets and any detour dominating set of order [Formula: see text] is called a [Formula: see text] - set of [Formula: see text]. The detour domination numbers of some standard graphs are determined. Connected graph of order [Formula: see text] with detour domination number [Formula: see text] or [Formula: see text] is characterized. For positive integers [Formula: see text] and [Formula: see text] with [Formula: see text], there exists a connected graph with [Formula: see text] and [Formula: see text].


Filomat ◽  
2016 ◽  
Vol 30 (11) ◽  
pp. 3075-3082
Author(s):  
Yero González ◽  
Magdalena Lemńska

The distance d(u,v) between two vertices u and v in a connected graph G is the length of a shortest u-v path in G. A u-v path of length d(u,v) is called u-v geodesic. A set X is convex in G if vertices from all a -b geodesics belong to X for every two vertices a,b?X. A set of vertices D is dominating in G if every vertex of V-D has at least one neighbor in D. The convex domination number con(G) of a graph G equals the minimum cardinality of a convex dominating set in G. A set of vertices S of a graph G is a geodetic set of G if every vertex v ? S lies on a x-y geodesic between two vertices x,y of S. The minimum cardinality of a geodetic set of G is the geodetic number of G and it is denoted by g(G). Let D,S be a convex dominating set and a geodetic set in G, respectively. The two sets D and S form a convex dominating-geodetic partition of G if |D| + |S| = |V(G)|. Moreover, a convex dominating-geodetic partition of G is called optimal if D is a ?con(G)-set and S is a g(G)-set. In the present article we study the (optimal) convex dominating-geodetic partitions of graphs.


Sign in / Sign up

Export Citation Format

Share Document