Distance Laplacian eigenvalues and chromatic number in graphs

Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2545-2555 ◽  
Author(s):  
Mustapha Aouchiche ◽  
Pierre Hansen

In the present paper we are interested in the study of the distance Laplacian eigenvalues of a connected graph with fixed order n and chromatic number x. We prove lower bounds on the distance Laplacian spectral radius in terms of n and x. We also prove results related to the distribution of the distance Laplacian eigenvalues with respect to the values of the chromatic number x. For some of the results, we characterize the extremal graphs, for others, we give examples of extremal graphs.

2015 ◽  
Vol 29 ◽  
pp. 237-253 ◽  
Author(s):  
Kinkar Das ◽  
SHAOWEI SUN

Let $G=(V,\,E)$ be a simple graph of order $n$ and the normalized Laplacian eigenvalues $\rho_1\geq \rho_2\geq \cdots\geq\rho_{n-1}\geq \rho_n=0$. The normalized Laplacian energy (or Randi\'c energy) of $G$ without any isolated vertex is defined as $$RE(G)=\sum_{i=1}^{n}|\rho_i-1|.$$ In this paper, a lower bound on $\rho_1$ of connected graph $G$ ($G$ is not isomorphic to complete graph) is given and the extremal graphs (that is, the second minimal normalized Laplacian spectral radius of connected graphs) are characterized. Moreover, Nordhaus-Gaddum type results for $\rho_1$ are obtained. Recently, Gutman et al.~gave a conjecture on Randi\'c energy of connected graph [I. Gutman, B. Furtula, \c{S}. B. Bozkurt, On Randi\'c energy, Linear Algebra Appl. 442 (2014) 50--57]. Here this conjecture for starlike trees is proven.


2018 ◽  
Vol 34 ◽  
pp. 191-204 ◽  
Author(s):  
Fouzul Atik ◽  
Pratima Panigrahi

The \emph{distance matrix} of a simple connected graph $G$ is $D(G)=(d_{ij})$, where $d_{ij}$ is the distance between the $i$th and $j$th vertices of $G$. The \emph{distance signless Laplacian matrix} of the graph $G$ is $D_Q(G)=D(G)+Tr(G)$, where $Tr(G)$ is a diagonal matrix whose $i$th diagonal entry is the transmission of the vertex $i$ in $G$. In this paper, first, upper and lower bounds for the spectral radius of a nonnegative matrix are constructed. Applying this result, upper and lower bounds for the distance and distance signless Laplacian spectral radius of graphs are given, and the extremal graphs for these bounds are obtained. Also, upper bounds for the modulus of all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius of graphs are given. These bounds are probably first of their kind as the authors do not find in the literature any bound for these eigenvalues. Finally, for some classes of graphs, it is shown that all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius lie in the smallest Ger\^sgorin disc of the distance (respectively, distance signless Laplacian) matrix.


2018 ◽  
Vol 10 (03) ◽  
pp. 1850035 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Somnath Paul

The distance signless Laplacian spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we determine some bounds on the distance signless Laplacian spectral radius of [Formula: see text] based on some graph invariants, and characterize the extremal graphs. In addition, we define distance signless Laplacian energy, similar to that in [J. Yang, L. You and I. Gutman, Bounds on the distance Laplacian energy of graphs, Kragujevac J. Math. 37 (2013) 245–255] and give some bounds on the distance signless Laplacian energy of graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 792
Author(s):  
Luis Medina ◽  
Hans Nina ◽  
Macarena Trigo

In this article, we find sharp lower bounds for the spectral radius of the distance signless Laplacian matrix of a simple undirected connected graph and we apply these results to obtain sharp upper bounds for the distance signless Laplacian energy graph. The graphs for which those bounds are attained are characterized.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2016 ◽  
Vol 08 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Shaohui Wang ◽  
Bing Wei

Let [Formula: see text] be multiplicative Zagreb index of a graph [Formula: see text]. A connected graph is a cactus graph if and only if any two of its cycles have at most one vertex in common, which is a generalization of trees and has been the interest of researchers in the field of material chemistry and graph theory. In this paper, we use a new tool to obtain the upper and lower bounds of [Formula: see text] for all cactus graphs and characterize the corresponding extremal graphs.


2019 ◽  
Vol 17 (1) ◽  
pp. 668-676
Author(s):  
Tingzeng Wu ◽  
Huazhong Lü

Abstract Let G be a connected graph and u and v two vertices of G. The hyper-Wiener index of graph G is $\begin{array}{} WW(G)=\frac{1}{2}\sum\limits_{u,v\in V(G)}(d_{G}(u,v)+d^{2}_{G}(u,v)) \end{array}$, where dG(u, v) is the distance between u and v. In this paper, we first give the recurrence formulae for computing the hyper-Wiener indices of polyphenyl chains and polyphenyl spiders. We then obtain the sharp upper and lower bounds for the hyper-Wiener index among polyphenyl chains and polyphenyl spiders, respectively. Moreover, the corresponding extremal graphs are determined.


2017 ◽  
Vol 32 ◽  
pp. 438-446 ◽  
Author(s):  
Dan Li ◽  
Guoping Wang ◽  
Jixiang Meng

Let \eta(G) denote the distance signless Laplacian spectral radius of a connected graph G. In this paper,bounds for the distance signless Laplacian spectral radius of connected graphs are given, and the extremal graph with the minimal distance signless Laplacian spectral radius among the graphs with given vertex connectivity and minimum degree is determined. Furthermore, the digraph that minimizes the distance signless Laplacian spectral radius with given vertex connectivity is characterized.


2021 ◽  
Vol 631 ◽  
pp. 136-142
Author(s):  
B. Afshari ◽  
M.T. Saadati ◽  
R. Saadati

Sign in / Sign up

Export Citation Format

Share Document