scholarly journals The topology of θω-open sets

Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5369-5377 ◽  
Author(s):  
Ghour Al ◽  
Bayan Irshedat

We define the ??-closure operator as a new topological operator. We show that ??-closure of a subset of a topological space is strictly between its usual closure and its ?-closure. Moreover, we give several sufficient conditions for the equivalence between ??-closure and usual closure operators, and between ??-closure and ?-closure operators. Also, we use the ??-closure operator to introduce ??-open sets as a new class of sets and we prove that this class of sets lies strictly between the class of open sets and the class of ?-open sets. We investigate ??-open sets, in particular, we obtain a product theorem and several mapping theorems. Moreover, we introduce ?-T2 as a new separation axiom by utilizing ?-open sets, we prove that the class of !-T2 is strictly between the class of T2 topological spaces and the class of T1 topological spaces. We study relationship between ?-T2 and ?-regularity. As main results of this paper, we give a characterization of ?-T2 via ??-closure and we give characterizations of ?-regularity via ??-closure and via ??-open sets.

Filomat ◽  
2019 ◽  
Vol 33 (10) ◽  
pp. 3209-3221
Author(s):  
Dimitrije Andrijevic

Using the topology T in a topological space (X,T), a new class of generalized open sets called ?-preopen sets, is introduced and studied. This class generates a new topology Tg which is larger than T? and smaller than T??. By means of the corresponding interior and closure operators, among other results, necessary and sufficient conditions are given for Tg to coincide with T? , T? or T??.


Author(s):  
Mohammad Irshad KHODABOCUS ◽  
Noor-Ul-Hacq SOOKIA

In a generalized topological space Tg = (Ω, Tg), ordinary interior and ordinary closure operators intg, clg : P (Ω) −→ P (Ω), respectively, are defined in terms of ordinary sets. In order to let these operators be as general and unified a manner as possible, and so to prove as many generalized forms of some of the most important theorems in generalized topological spaces as possible, thereby attaining desirable and interesting results, the present au- thors have defined the notions of generalized interior and generalized closure operators g-Intg, g-Clg : P (Ω) −→ P (Ω), respectively, in terms of a new class of generalized sets which they studied earlier and studied their essen- tial properties and commutativity. The outstanding result to which the study has led to is: g-Intg : P (Ω) −→ P (Ω) is finer (or, larger, stronger) than intg : P (Ω) −→ P (Ω) and g-Clg : P (Ω) −→ P (Ω) is coarser (or, smal ler, weaker) than clg : P (Ω) −→ P (Ω). The elements supporting this fact are reported therein as a source of inspiration for more generalized operations.


1982 ◽  
Vol 25 (2) ◽  
pp. 169-178
Author(s):  
S. B. Niefield

AbstractLet Top denote the category of topological spaces and continuous maps. In this paper we discuss families of function spaces indexed by the elements of a topological space T, and their relationship to the characterization of right adjoints Top/S → Top/T, where S is also a topological space. After reducing the problem to the case where S is a one-point space, we describe a class of right adjoints Top → Top/T, and then show that every right adjoint Top → Top/T is isomorphic to one of this form. We conclude by giving necessary and sufficient conditions for a left adjoint Top/T → Top to be isomorphic to one of the form − XTY, where Y is a space over T, and xT denotes the fiber product with the product topology.


2001 ◽  
Vol 27 (8) ◽  
pp. 505-512 ◽  
Author(s):  
José Carlos Rodríguez Alcantud

We extend van Dalen and Wattel's (1973) characterization of orderable spaces and their subspaces by obtaining analogous results for two larger classes of topological spaces. This type of spaces are defined by considering preferences instead of linear orders in the former definitions, and possess topological properties similar to those of (totally) orderable spaces (cf. Alcantud, 1999). Our study provides particular consequences of relevance in mathematical economics; in particular, a condition equivalent to the existence of a continuous preference on a topological space is obtained.


1976 ◽  
Vol 19 (1) ◽  
pp. 117-119
Author(s):  
H. L. Shapiro ◽  
F. A. Smith

Recently there has been a great deal of interest in extending refinements of locally finite and point finite collections on subsets of certain topological spaces. In particular the first named author showed that a subset S of a topological space X is P-embedded in X if and only if every locally finite cozero-set cover on S has a refinement that can be extended to a locally finite cozero-set cover of X. Since then many authors have studied similar types of embeddings (see [1], [2], [3], [4], [6], [8], [9], [10], [11], and [12]). Since the above characterization of P-embedding is equivalent to extending continuous pseudometrics from the subspace S up to the whole space X, it is natural to wonder when can a locally finite or a point finite open or cozero-set cover on S be extended to a locally finite or point-finite open or cozero-set cover on X.


Author(s):  
Hamid Reza Moradi

A nonzero fuzzy open set () of a fuzzy topological space is said to be fuzzy minimal open (resp. fuzzy maximal open) set if any fuzzy open set which is contained (resp. contains) in is either or itself (resp. either or itself). In this note, a new class of sets called fuzzy minimal open sets and fuzzy maximal open sets in fuzzy topological spaces are introduced and studied which are subclasses of open sets. Some basic properties and characterization theorems are also to be investigated.


1991 ◽  
Vol 14 (2) ◽  
pp. 309-314 ◽  
Author(s):  
M. N. Mukherjee ◽  
S. P. Sinha

The paper contains a study of fuzzyθ-closure operator,θ-closures of fuzzy sets in a fuzzy topological space are characterized and some of their properties along with their relation with fuzzyδ-closures are investigated. As applications of these concepts, certain functions as well as some spaces satisfying certain fuzzy separation axioms are characterized in terms of fuzzyθ-closures andδ-closures.


1989 ◽  
Vol 39 (1) ◽  
pp. 31-48 ◽  
Author(s):  
Frank P. Prokop

In this paper neighbourhood lattices are developed as a generalisation of topological spaces in order to examine to what extent the concepts of “openness”, “closedness”, and “continuity” defined in topological spaces depend on the lattice structure of P(X), the power set of X.A general pre-neighbourhood system, which satisfies the poset analogues of the neighbourhood system of points in a topological space, is defined on an ∧-semi-lattice, and is used to define open elements. Neighbourhood systems, which satisfy the poset analogues of the neighbourhood system of sets in a topological space, are introduced and it is shown that it is the conditionally complete atomistic structure of P(X) which determines the extension of pre-neighbourhoods of points to the neighbourhoods of sets.The duals of pre-neighbourhood systems are used to generate closed elements in an arbitrary lattice, independently of closure operators or complementation. These dual systems then form the backdrop for a brief discussion of the relationship between preneighbourhood systems, topological closure operators, algebraic closure operators, and Čech closure operators.Continuity is defined for functions between neighbourhood lattices, and it is proved that a function f: X → Y between topological spaces is continuous if and only if corresponding direct image function between the neighbourhood lattices P(X) and P(Y) is continuous in the neighbourhood sense. Further, it is shown that the algebraic character of continuity, that is, the non-convergence aspects, depends only on the properites of pre-neighbourhood systems. This observation leads to a discussion of the continuity properties of residuated mappings. Finally, the topological properties of normality and regularity are characterised in terms of the continuity properties of the closure operator on a topological space.


1996 ◽  
Vol 19 (2) ◽  
pp. 311-316
Author(s):  
Jennifer P. Montgomery

The concept of a uniformity was developed by A. Well and there have been several generalizations. This paper defines a point semiuniformity and gives necessary and sufficient conditions for a topological space to be point semiuniformizable. In addition, just as uniformities are associated with topological groups, a point semiuniformity is naturally associated with a semicontinuous group. This paper shows that a point semiuniformity associated with a semicontinuous group is a uniformity if and only if the group is a topological group.


2016 ◽  
Vol 4 (2) ◽  
pp. 151-159
Author(s):  
D Anabalan ◽  
Santhi C

The purpose of this paper is to introduce and study some new class of definitions like µ-point closure and gµ –regular space concerning generalized topological space. We obtain some characterizations and several properties of such definitions. This paper takes some investigations on generalized topological spaces with gµ –closed sets and gµ–closed sets.


Sign in / Sign up

Export Citation Format

Share Document