Identities for the shifted harmonic numbers and binomial coeffecients

Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6071-6086
Author(s):  
Ce Xu

We develop new closed form representations of sums of (n+?)th shifted harmonic numbers and reciprocal binomial coeffecients through ?th shifted harmonic numbers and Riemann zeta function with positive integer arguments. Some interesting new consequences and illustrative examples are considered.

2017 ◽  
Vol 13 (03) ◽  
pp. 655-672 ◽  
Author(s):  
Ce Xu ◽  
Yingyue Yang ◽  
Jianwen Zhang

In this paper, we work out some explicit formulae for double nonlinear Euler sums involving harmonic numbers and alternating harmonic numbers. As applications of these formulae, we give new closed form representations of several quadratic Euler sums through Riemann zeta function and linear sums. The given representations are new.


Author(s):  
Pablo A. Panzone

Abstract Using some formulas of S. Ramanujan, we compute in closed form the Fourier transform of functions related to Riemann zeta function $\zeta (s)=\sum \nolimits _{n=1}^{\infty } {1}/{n^{s}}$ and other Dirichlet series.


1990 ◽  
Vol 13 (3) ◽  
pp. 453-460 ◽  
Author(s):  
E. Elizalde ◽  
A. Romeo

A general value for∫abdtlogΓ(t), fora,bpositive reals, is derived in terms of the Hurwitzζfunction. That expression is checked for a previously known special integral, and the case whereais a positive integer andbis half an odd integer is considered. The result finds application in calculating the numerical value of the derivative of the Riemann zeta function at the point−1, a quantity that arises in the evaluation of determinants of Laplacians on compact Riemann surfaces.


2020 ◽  
Vol 32 (1) ◽  
pp. 1-22
Author(s):  
Amita Malik ◽  
Arindam Roy

AbstractFor the completed Riemann zeta function {\xi(s)}, it is known that the Riemann hypothesis for {\xi(s)} implies the Riemann hypothesis for {\xi^{(m)}(s)}, where m is any positive integer. In this paper, we investigate the distribution of the fractional parts of the sequence {(\alpha\gamma_{m})}, where α is any fixed non-zero real number and {\gamma_{m}} runs over the imaginary parts of the zeros of {\xi^{(m)}(s)}. We also obtain a zero density estimate and an explicit formula for the zeros of {\xi^{(m)}(s)}. In particular, all our results hold uniformly for {0\leq m\leq g(T)}, where the function {g(T)} tends to infinity with T and {g(T)=o(\log\log T)}.


1982 ◽  
Vol Volume 5 ◽  
Author(s):  
hugh L Montgomery

International audience For each positive integer $k$, let $$a_k(n)=(\sum_p p^{-s})^k=\sum_{n=1}^{\infty} a_k(n)n^{-s},$$ where $\sigma={\rm Re}(s)>1$, and the sum on the left runs over all primes $p$. This paper is devoted to proving the following theorem: If $1/2<\sigma<1$, then $$\max_k(\sum_{n\leq N} a_k(n)^2n^{-2\sigma})^{1/2k}\approx (\log N)^{1-\sigma}/\log\log N$$ and $$(\sum_{n=1}^{\infty} a_k(n)^2n^{-2\sigma})^{1/2k} \approx k^{1-\sigma}/(\log k)^{\sigma}.$$ The constants implied by the $\approx$ sign may depend upon $\sigma$. This theorem has applications to the Riemann zeta function.


2001 ◽  
Vol Volume 24 ◽  
Author(s):  
S Kanemitsu ◽  
Y Tanigawa ◽  
M Yoshimoto

International audience In a companion paper, ``On multi Hurwitz-zeta function values at rational arguments, Acta Arith. {\bf 107} (2003), 45-67'', we obtained a closed form evaluation of Ramanujan's type of the values of the (multiple) Hurwitz zeta-function at rational arguments (with denominator even and numerator odd), which was in turn a vast generalization of D. Klusch's and M. Katsurada's generalization of Ramanujan's formula. In this paper we shall continue our pursuit, specializing to the Riemann zeta-function, and obtain a closed form evaluation thereof at all rational arguments, with no restriction to the form of the rationals, in the critical strip. This is a complete generalization of the results of the aforementioned two authors. We shall obtain as a byproduct some curious identities among the Riemann zeta-values.


Sign in / Sign up

Export Citation Format

Share Document