scholarly journals Convergence theorems for composite viscosity approaches to systems variational inequalities in Banach spaces

Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6267-6281
Author(s):  
Lu-Chuan Ceng ◽  
Jen-Chih Yao ◽  
Yonghong Yao

In this paper, we study a general system of variational inequalities with a hierarchical variational inequality constraint for an infinite family of nonexpansive mappings. We introduce general implicit and explicit iterative algorithms. We prove the strong convergence of the sequences generated by the proposed iterative algorithms to a solution of the studied problems.

Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 218
Author(s):  
Lu-Chuan Ceng ◽  
Xiaoye Yang

This paper discusses a monotone variational inequality problem with a variational inequality constraint over the common solution set of a general system of variational inequalities (GSVI) and a common fixed point (CFP) of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping in Hilbert spaces, which is called the triple hierarchical constrained variational inequality (THCVI), and introduces some Mann-type implicit iteration methods for solving it. Norm convergence of the proposed methods of the iteration methods is guaranteed under some suitable assumptions.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 142 ◽  
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In the present work, we introduce a hybrid Mann viscosity-like implicit iteration to find solutions of a monotone classical variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities and a problem of common fixed points of an asymptotically nonexpansive mapping and a countable of uniformly Lipschitzian pseudocontractive mappings in Hilbert spaces, which is called the triple hierarchical constrained variational inequality. Strong convergence of the proposed method to the unique solution of the problem is guaranteed under some suitable assumptions. As a sub-result, we provide an algorithm to solve problem of common fixed points of pseudocontractive, nonexpansive mappings, variational inequality problems and generalized mixed bifunction equilibrium problems in Hilbert spaces.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 187
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this paper, we introduce a multiple hybrid implicit iteration method for finding a solution for a monotone variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities, and a common fixed point problem of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces. Strong convergence of the proposed method to the unique solution of the problem is established under some suitable assumptions.


2018 ◽  
Vol 9 (3) ◽  
pp. 167-184 ◽  
Author(s):  
Lateef Olakunle Jolaoso ◽  
Ferdinard Udochukwu Ogbuisi ◽  
Oluwatosin Temitope Mewomo

Abstract In this paper, we propose an iterative algorithm for approximating a common fixed point of an infinite family of quasi-Bregman nonexpansive mappings which is also a solution to finite systems of convex minimization problems and variational inequality problems in real reflexive Banach spaces. We obtain a strong convergence result and give applications of our result to finding zeroes of an infinite family of Bregman inverse strongly monotone operators and a finite system of equilibrium problems in real reflexive Banach spaces. Our result extends many recent corresponding results in literature.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Bashir Ali

We prove a new strong convergence theorem for an element in the intersection of the set of common fixed points of a countable family of nonexpansive mappings, the set of solutions of some variational inequality problems, and the set of solutions of some equilibrium problems using a new iterative scheme. Our theorem generalizes and improves some recent results.


Sign in / Sign up

Export Citation Format

Share Document