scholarly journals Some Mann-Type Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems Variational Inequalities and Fixed Point Problems

Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 218
Author(s):  
Lu-Chuan Ceng ◽  
Xiaoye Yang

This paper discusses a monotone variational inequality problem with a variational inequality constraint over the common solution set of a general system of variational inequalities (GSVI) and a common fixed point (CFP) of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping in Hilbert spaces, which is called the triple hierarchical constrained variational inequality (THCVI), and introduces some Mann-type implicit iteration methods for solving it. Norm convergence of the proposed methods of the iteration methods is guaranteed under some suitable assumptions.

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 187
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this paper, we introduce a multiple hybrid implicit iteration method for finding a solution for a monotone variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities, and a common fixed point problem of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces. Strong convergence of the proposed method to the unique solution of the problem is established under some suitable assumptions.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 142 ◽  
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In the present work, we introduce a hybrid Mann viscosity-like implicit iteration to find solutions of a monotone classical variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities and a problem of common fixed points of an asymptotically nonexpansive mapping and a countable of uniformly Lipschitzian pseudocontractive mappings in Hilbert spaces, which is called the triple hierarchical constrained variational inequality. Strong convergence of the proposed method to the unique solution of the problem is guaranteed under some suitable assumptions. As a sub-result, we provide an algorithm to solve problem of common fixed points of pseudocontractive, nonexpansive mappings, variational inequality problems and generalized mixed bifunction equilibrium problems in Hilbert spaces.


Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6267-6281
Author(s):  
Lu-Chuan Ceng ◽  
Jen-Chih Yao ◽  
Yonghong Yao

In this paper, we study a general system of variational inequalities with a hierarchical variational inequality constraint for an infinite family of nonexpansive mappings. We introduce general implicit and explicit iterative algorithms. We prove the strong convergence of the sequences generated by the proposed iterative algorithms to a solution of the studied problems.


Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 2939-2951
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this paper, let X be a uniformly convex and q-uniformly smooth Banach space with 1 < q ? 2. We introduce and study modified implicit extragradient iterations for treating a common solution of a common fixed-point problem of a countable family of nonexpansive mappings, a general system of variational inequalities, and a variational inclusion in X.


2013 ◽  
Vol 2013 ◽  
pp. 1-44
Author(s):  
L. C. Ceng ◽  
A. E. Al-Mazrooei ◽  
A. A. N. Abdou ◽  
A. Latif

We introduce hybrid and relaxed Mann iteration methods for a general system of variational inequalities with solutions being also common solutions of a countable family of variational inequalities and common fixed points of a countable family of nonexpansive mappings in real smooth and uniformly convex Banach spaces. Here, the hybrid and relaxed Mann iteration methods are based on Korpelevich’s extragradient method, viscosity approximation method, and Mann iteration method. Under suitable assumptions, we derive some strong convergence theorems for hybrid and relaxed Mann iteration algorithms not only in the setting of uniformly convex and 2-uniformly smooth Banach space but also in a uniformly convex Banach space having a uniformly Gateaux differentiable norm. The results presented in this paper improve, extend, supplement, and develop the corresponding results announced in the earlier and very recent literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Long He ◽  
Yun-Ling Cui ◽  
Lu-Chuan Ceng ◽  
Tu-Yan Zhao ◽  
Dan-Qiong Wang ◽  
...  

AbstractIn a real Hilbert space, let GSVI and CFPP represent a general system of variational inequalities and a common fixed point problem of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new subgradient extragradient implicit rule, we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone equilibrium problem over the common solution set of another monotone equilibrium problem, the GSVI and the CFPP. Some strong convergence results for the proposed algorithms are established under the mild assumptions, and they are also applied for finding a common solution of the GSVI, VIP, and FPP, where the VIP and FPP stand for a variational inequality problem and a fixed point problem, respectively.


Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4769-4784
Author(s):  
Lu-Chuan Ceng ◽  
Jen-Chih Yao ◽  
Yonghong Yao

In this paper, we introduce implicit composite three-step Mann iterations for finding a common solution of a general system of variational inequalities, a fixed point problem of a countable family of pseudocontractive mappings and a zero problem of an accretive operator in Banach spaces. Strong convergence of the suggested iterations are given.


2021 ◽  
Vol 37 (3) ◽  
pp. 477-487
Author(s):  
MONDAY OGUDU NNAKWE ◽  
◽  
" JERRY N." EZEORA ◽  

In this paper, using a sunny generalized non-expansive retraction which is different from the metric projection and generalized metric projection in Banach spaces, we present a retractive iterative algorithm of Krasnosel’skii-type, whose sequence approximates a common solution of a mono-variational inequality of a finite family of η-strongly-pseudo-monotone-type maps and fixed points of a countable family of generalized non-expansive-type maps. Furthermore, some new results relevant to the study are also presented. Finally, the theorem proved complements, improves and extends some important related recent results in the literature.


Sign in / Sign up

Export Citation Format

Share Document