scholarly journals Generalized derivation, SVEP, finite ascent, range closure

Filomat ◽  
2020 ◽  
Vol 34 (10) ◽  
pp. 3473-3482
Author(s):  
Farida Lombarkia ◽  
Sabra Megri

Let X be an infinite complex Banach space and consider two bounded linear operators A,B ? L(X). Let LA ? L(L(X)) and RB ? L(L(X)) be the left and the right multiplication operators, respectively. The generalized derivation ?A,B ? L(L(X)) is defined by ?A,B(X) = (LA-RB)(X) = AX-XB. In this paper we give some sufficient conditions for ?A,B to satisfy SVEP, and we prove that ?A,B-?I has finite ascent for all complex ?, for general choices of the operators A and B, without using the range kernel orthogonality. This information is applied to prove some necessary and sufficient conditions for the range of ?A,B-?I to be closed. In [18, Propostion 2.9] Duggal et al. proved that, if asc(?A,B-?)? 1, for all complex ?, and if either (i) A* and B have SVEP or (ii)?* A,B has SVEP, then ?A,B-? has closed range for all complex ? if and only if A and B are algebraic operators, we prove using the spectral theory that, if asc(?A,B-?) ? 1, for all complex ?, then ?A,B-? has closed range, for all complex ? if and only if A and B are algebraic operators, without the additional conditions (i) or (ii).


2015 ◽  
Vol 30 ◽  
pp. 916-913
Author(s):  
Janko Bracic ◽  
Nadia Boudi

Let X be a complex Banach space and L(X) be the algebra of all bounded linear operators on X. For a given elementary operator P of length 2 on L(X), we determine necessary and sufficient conditions for the existence of a solution of the equation YP=0 in the algebra of all elementary operators on L(X). Our approach allows us to characterize some invertible elementary operators of length 2 whose inverses are elementary operators.



2018 ◽  
Vol 61 (4) ◽  
pp. 717-737 ◽  
Author(s):  
Shangquan Bu ◽  
Gang Cai

AbstractWe give necessary and sufficient conditions of the Lp-well-posedness (resp. -wellposedness) for the second order degenerate differential equation with finite delayswith periodic boundary conditions (Mu)(0) = (Mu)(2π), (Mu)′ (0) = (Mu)′ (2π), where A, B, and M are closed linear operators on a complex Banach space X satisfying D(A) ∩ D(B) ⊂ D(M), F and G are bounded linear operators from into X.



2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Karim Hedayatian ◽  
Lotfollah Karimi

A bounded linear operatorTon a Hilbert spaceℋ, satisfying‖T2h‖2+‖h‖2≥2‖Th‖2for everyh∈ℋ, is called a convex operator. In this paper, we give necessary and sufficient conditions under which a convex composition operator on a large class of weighted Hardy spaces is an isometry. Also, we discuss convexity of multiplication operators.



2019 ◽  
Vol 22 (2) ◽  
pp. 379-395
Author(s):  
Shangquan Bu ◽  
Gang Cai

Abstract We study the well-posedness of the fractional degenerate differential equation: Dα (Mu)(t) + cDβ(Mu)(t) = Au(t) + f(t), (0 ≤ t ≤ 2π) on Lebesgue-Bochner spaces Lp(𝕋; X) and periodic Besov spaces $\begin{array}{} B_{p,q}^s \end{array}$ (𝕋; X), where A and M are closed linear operators in a complex Banach space X satisfying D(A) ⊂ D(M), c ∈ ℂ and 0 < β < α are fixed. Using known operator-valued Fourier multiplier theorems, we give necessary and sufficient conditions for Lp-well-posedness and $\begin{array}{} B_{p,q}^s \end{array}$-well-posedness of above equation.



2021 ◽  
Vol 28 (02) ◽  
Author(s):  
Xiuhong Sun ◽  
Yuan Li

In this note, we mainly study the necessary and sufficient conditions for the complete positivity of generalizations of depolarizing and transpose-depolarizing channels. Specifically, we define [Formula: see text] and [Formula: see text], where [Formula: see text] (the set of all bounded linear operators on the finite-dimensional Hilbert space [Formula: see text] is given and [Formula: see text] is the transpose of [Formula: see text] in a fixed orthonormal basis of [Formula: see text] First, we show that [Formula: see text] is completely positive if and only if [Formula: see text] is a positive map, which is equivalent to [Formula: see text] Moreover, [Formula: see text] is a completely positive map if and only if [Formula: see text] and [Formula: see text] At last, we also get that [Formula: see text] is a completely positive map if and only if [Formula: see text] with [Formula: see text] for all [Formula: see text] where [Formula: see text] are eigenvalues of [Formula: see text].



2009 ◽  
Vol 20 (11) ◽  
pp. 1431-1454
Author(s):  
VICTOR J. MIZEL ◽  
M. M. RAO

In this paper bounded linear operators in Hilbert space satisfying general quadratic equations are characterized. Necessary and sufficient conditions for sets of operators satisfying two such equations to compare relative to a weak ordering are presented. In addition, averaging operators in finite dimensional spaces are determined, and in this case it is shown that they are unitary models for all projections. It is pointed out, by an example, that the latter result does not hold in infinite dimensions. A key application to certain second order random fields of Karhunen type is given. The main purpose is to present the structure of bounded non-self adjoint operators solving quadratic equations, and indicate their use.



2017 ◽  
Vol 32 ◽  
pp. 172-183 ◽  
Author(s):  
Mehdi Vosough ◽  
Mohammad Sal Moslehian

In this paper, some necessary and sufficient conditions are established for the existence of solutions to the system of operator equations $BXA=B=AXB$ in the setting of bounded linear operators on a Hilbert space, where the unknown operator $X$ is called the inverse of $A$ along $B$. After that, under some mild conditions, it is proved that an operator $X$ is a solution of $BXA=B=AXB$ if and only if $B \stackrel{*}{ \leq} AXA$, where the $*$-order $C\stackrel{*}{ \leq} D$ means $CC^*=DC^*, C^*C=C^*D$. Moreover, the general solution of the equation above is obtained. Finally, some characterizations of $C \stackrel{*}{ \leq} D$ via other operator equations, are presented.



2021 ◽  
Vol 8 (1) ◽  
pp. 135-149
Author(s):  
Fatih Barki

Abstract Let {S(t)}t ≥ 0 be an integrated semigroup of bounded linear operators on the Banach space 𝒳 into itself and let A be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of S(t) converge uniformly on ℬ(𝒳). More precisely, we show that the Abel average of S(t) converges uniformly if and only if 𝒳 = ℛ(A) ⊕ 𝒩(A), if and only if ℛ(Ak) is closed for some integer k and ∥ λ 2 R(λ, A) ∥ → 0 as λ→ 0+, where ℛ(A), 𝒩(A) and R(λ, A), be the range, the kernel, the resolvent function of A, respectively. Furthermore, we prove that if S(t)/t 2 → 0 as t → 1, then the Cesàro mean of S(t) converges uniformly if and only if the Abel average of S(t) is also converges uniformly.



2018 ◽  
Vol 34 ◽  
pp. 407-427 ◽  
Author(s):  
Martin Ljubenović ◽  
Dragan Djordjevic

Linear preservers of weak supermajorization which is defined on positive functions contained in the discrete Lebesgue space $\ell^1(I)$ are characterized. Two different classes of operators that preserve the weak supermajorization are formed. It is shown that every linear preserver may be decomposed as sum of two operators from the above classes, and conversely, the sum of two operators which satisfy an additional condition is a linear preserver. Necessary and sufficient conditions under which a bounded linear operator is a linear preserver of the weak supermajorization are given. It is concluded that positive linear preservers of the weak supermajorization coincide with preservers of weak majorization and standard majorization on $\ell^1(I)$.



1996 ◽  
Vol 53 (3) ◽  
pp. 391-400 ◽  
Author(s):  
Lajos Molnár

Let H be a complex Hilbert space and let B(H) denote the algebra of all bounded linear operators on H. In this paper we give two necessary and sufficient conditions for an additive bijection of B(H) to be a *-automorphism. Both of the results in the paper are related to the so-called preserver problems.



Sign in / Sign up

Export Citation Format

Share Document