scholarly journals Substitution of the clayey mineral component by lignite fly ash in portland cement clinker synthesis

2006 ◽  
Vol 60 (9-10) ◽  
pp. 253-258 ◽  
Author(s):  
Natasa Jovanovic ◽  
Miroslav Komljenovic ◽  
Ljiljana Petrasinovic-Stojkanovic ◽  
Zvezdana Bascarevic ◽  
Violeta Bradic ◽  
...  

Fly ash from four power plants in Serbia (PP "Morava" - Svilajnac, PP "Kolubara" - Veliki Grijani, PP "Kostolac" - units B1 and B2 - Kostolac and PP "Nikola Tesla" - units A and B - Obrenovac) was utilized as the starting raw component for Portland cement clinker synthesis. Limestone and quartz sand from the "Holcim - Serbia, a.d." cement factory were the other two starting raw components. Based on the chemical composition of the raw components and from the projected cement moduli, the amounts of raw components in the raw mixtures were calculated. Six different raw mixtures were prepared - each one consisted of limestone, sand and different fly ash. A raw mixture from the industrial production of the "Holcim - Serbia, a.d." cement factory was used as the reference material. The prepared raw mixtures were sintered in a laboratory furnace at 1400?C. The chemical and mineralogical compositions of the synthesized clinkers were determined. The characteristics of clinkers, based on fly ash, were compared to the characteristics of the industrial Portland cement clinker from the "Holcim - Serbia, a.d." cement factory. The results of the investigation showed that fly ash from power plants in Serbia can be suitable for Portland cement clinker synthesis.

2006 ◽  
Vol 60 (9-10) ◽  
pp. 245-252 ◽  
Author(s):  
Zvezdana Bascarevic ◽  
Miroslav Komljenovic ◽  
Ljiljana Petrasinovic-Stojkanovic ◽  
Natasa Jovanovic ◽  
Aleksandra Rosic ◽  
...  

In this paper the results of the investigated properties of fly ash from four thermal power plants in Serbia are presented. The physical, chemical, mineralogical and thermal characterization of fly ash was carried out, in order to determine the possibility to utilize this material in the building materials industry, foremost in the cement industry. It was determined that, although there are differences concerning the physical, chemical, and mineralogical characteristics of the investigated samples, they are very similar concerning their thermal characteristics. It was concluded that using fly ash as one of the raw components in the mixture for Portland cement clinker synthesis, not only enables the substitution of natural resources, but it might have a positive effect on the lowering of the sintering temperature.


1986 ◽  
Vol 86 ◽  
Author(s):  
Micheline Regourd

ABSTRACTThe hydration of a blended cement through hydraulic or pozzolanic reactions results in heterogeneous polyphase materials. Because portland cement clinker is the major component in most cement blends, the microstructural development of portland cement hydrates, including C-S-H and pore structures, is first discussed. Slag, fly ash, silica fume and limestone filler cements are then compared to portland cement with regards to C-S-H morphology and composition, aluminate crystallization, cement paste interfaces and pore size distribution.


2019 ◽  
Vol 1 (1) ◽  
pp. 43-44

Several supplementary cementitious materials (SCM) were blended with Portland cement clinker in order to produce more sustainable binders. The use of such materials, where no additional clinkering process is involved, leads to a significant reduction in CO2 emissions per ton of cementitious materials (grinding, mixing and transport of concrete and use very little energy compared to the clinkering process) and is a means to (re)utilize by-products of industrial manufacturing processes. Fly ash, for example, is the most commonly used supplementary cementitious material. The blending of Portland cement with fly ash results in the reduction of the total amount of portlandite in the hydrated mixture [1-4], somewhat less pronounced than for silica fume as: the reactivity of fly ash is very limited and as the CaO in the fly ash is an additional source of calcium [5]. Since fly ash particles are more spherical in shape than cement particles, workability and pumpability can be improved, by adding fly ash, also, fly ashes can cause low early strengthening. In this paper, the effects of Fly-ash as SCM’s on microstructure and hydration kinetics are studied.


1986 ◽  
Vol 85 ◽  
Author(s):  
Micheline Regourd

ABSTRACTThe hydration of a blended cement through hydraulic or pozzolanic reactions results in heterogeneous polyphase materials. Because portland cement clinker is the major component in most cement blends, the microstructural development of portland cement hydrates, including C-S-H and pore structures, is first discussed. Slag, fly ash, silica fume and limestone filler cements are then compared to portland cement with regards to C-S-H morphology and composition, aluminate crystallization, cement paste interfaces and pore size distribution.


2009 ◽  
Vol 96 (2) ◽  
pp. 363-368 ◽  
Author(s):  
M. Komljenović ◽  
Lj. Petrašinović-Stojkanović ◽  
Z. Baščarević ◽  
N. Jovanović ◽  
A. Rosić

Sign in / Sign up

Export Citation Format

Share Document