scholarly journals Some classes of integral graphs which belong to the class αKa U βKb,b

2003 ◽  
Vol 74 (88) ◽  
pp. 25-36 ◽  
Author(s):  
Mirko Lepovic

Let G be a simple graph and let G denote its complement. We say that G is integral if its spectrum consists of integral values. We have recently established a characterization of integral graphs which belong to the class ?Ka U ?Kb,b, where mG denotes the m-fold union of the graph G. In this work we investigate integral graphs from the class ?Ka U ?Kb,b with ?1 = a+b where ?1 is the largest eigenvalue of ?Ka U ?Kb,b.

2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Akbar Jahanbani ◽  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar

Let G be a simple graph of order n . The matrix ℒ G = D G − A G is called the Laplacian matrix of G , where D G and A G denote the diagonal matrix of vertex degrees and the adjacency matrix of G , respectively. Let l 1 G , l n − 1 G be the largest eigenvalue, the second smallest eigenvalue of ℒ G respectively, and λ 1 G be the largest eigenvalue of A G . In this paper, we will present sharp upper and lower bounds for l 1 G and l n − 1 G . Moreover, we investigate the relation between l 1 G and λ 1 G .


Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


2021 ◽  
Vol 9 (1) ◽  
pp. 19-21
Author(s):  
Zoran Stanić

Abstract We derive an inequality that includes the largest eigenvalue of the adjacency matrix and walks of an arbitrary length of a signed graph. We also consider certain particular cases.


10.37236/169 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Yanqing Chen ◽  
Ligong Wang

The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the graph. In this paper, we investigate Laplacian spread of graphs, and prove that there exist exactly five types of tricyclic graphs with maximum Laplacian spread among all tricyclic graphs of fixed order.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050068
Author(s):  
Hezan Huang ◽  
Bo Zhou

The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. For integers [Formula: see text] and [Formula: see text] with [Formula: see text], we prove that among the connected graphs on [Formula: see text] vertices of given maximum degree [Formula: see text] with at least one cycle, the graph [Formula: see text] uniquely maximizes the distance spectral radius, where [Formula: see text] is the graph obtained from the disjoint star on [Formula: see text] vertices and path on [Formula: see text] vertices by adding two edges, one connecting the star center with a path end, and the other being a chord of the star.


2017 ◽  
Vol 5 (1) ◽  
pp. 296-300
Author(s):  
Yanna Wang ◽  
Rundan Xing ◽  
Bo Zhou ◽  
Fengming Dong

Abstract The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. We determine the unique non-starlike non-caterpillar tree with maximal distance spectral radius.


Sign in / Sign up

Export Citation Format

Share Document