scholarly journals Korovkin type theorem for functions of two variables via lacunary equistatistical convergence

2017 ◽  
Vol 102 (116) ◽  
pp. 203-209
Author(s):  
M. Mursaleen

Aktu?lu and Gezer [1] introduced the concepts of lacunary equistatistical convergence, lacunary statistical pointwise convergence and lacunary statistical uniform convergence for sequences of functions. Recently, Kaya and G?n?l [11] proved some analogs of the Korovkin approximation theorem via lacunary equistatistical convergence by using test functions 1, x/1+x, y/1+y, (x/1+x)2 +(y/1+y)2. We apply the notion of lacunary equistatistical convergence to prove a Korovkin type approximation theorem for functions of two variables by using test functions 1, x/1?x, y/1?y, (x/1?x)2+(y/1?y)2.

2015 ◽  
Vol 7 (2) ◽  
pp. 110
Author(s):  
Malik Saad Al-Muhja

In this paper, using homogeneous groups, we prove a Korovkin type approximation theorem for a spline groupby using the notion of a generalization of positive linear operator.


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3641-3647 ◽  
Author(s):  
Abdullah Alotaibi ◽  
M. Mursaleen

Aktu?lu and H. Gezer [Central European J. Math. 7 (2009), 558-567] introduced the concepts of lacunary equistatistical convergence, lacunary statistical pointwise convergence and lacunary statistical uniform convergence for sequences of functions. In this paper, we apply the notion of lacunary equistatistical convergence to prove a Korovkin type approximation theorem by using test functions 1, x/1-x,(x/1-x)2.


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3483-3491 ◽  
Author(s):  
Ali Karaisa

In this study, we define [N?,??]q - summability and statistical (N?,??) summability. We also establish some inclusion relation and some related results for this new summability methods. Further we apply Korovkin type approximation theorem through statistical (N?,??) summability and we apply the classical Bernstein operator to construct an example in support of our result. Furthermore, we present a rate of convergence which is uniform in Korovkin type theorem by statistical (N?,??) summability.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Mohammed A. Alghamdi

Çakan et al. (2006) introduced the concept ofσ-convergence for double sequences. In this work, we use this notion to prove the Korovkin-type approximation theorem for functions of two variables by using the test functions 1,x,y, andx2+y2and construct an example by considering the Bernstein polynomials of two variables in support of our main result.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 636 ◽  
Author(s):  
Hari Mohan Srivastava ◽  
Bidu Bhusan Jena ◽  
Susanta Kumar Paikray

The concept of the deferred Nörlund equi-statistical convergence was introduced and studied by Srivastava et al. [Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM) 112 (2018), 1487–1501]. In the present paper, we have studied the notion of the deferred Nörlund statistical convergence and the statistical deferred Nörlund summability for sequences of real numbers defined over a Banach space. We have also established a theorem presenting a connection between these two interesting notions. Moreover, based upon our proposed methods, we have proved a new Korovkin-type approximation theorem with algebraic test functions for a sequence of real numbers on a Banach space and demonstrated that our theorem effectively extends and improves most of the earlier existing results (in classical and statistical versions). Finally, we have presented an example involving the generalized Meyer–König and Zeller operators of a real sequence demonstrating that our theorem is a stronger approach than its classical and statistical versions.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Abdullah Alotaibi

We define the notions of weighted λ,μ-statistical convergence of order γ1,γ2 and strongly weighted λ,μ-summability of γ1,γ2 for fuzzy double sequences, where 0<γ1,γ2≤1. We establish an inclusion result and a theorem presenting a connection between these concepts. Moreover, we apply our new concept of weighted λ,μ-statistical convergence of order γ1,γ2 to prove Korovkin-type approximation theorem for functions of two variables in a fuzzy sense. Finally, an illustrative example is provided with the help of q-analogue of fuzzy Bernstein operators for bivariate functions which shows the significance of our approximation theorem.


Author(s):  
H.M. Srivastava ◽  
Bidu Jena ◽  
Susanta Paikray

In the present work, we introduce and study the notion of statistical probability convergence for sequences of random variables as well as the concept of statistical convergence for sequences of real numbers, which are defined over a Banach space via deferred weighted summability mean. We first establish a theorem presenting a connection between them. Based upon our proposed methods, we then prove a new Korovkin-type approximation theorem with periodic test functions for a sequence of random variables on a Banach space and demonstrate that our theorem effectively extends and improves most (if not all) of the previously existing results (in statistical versions). We also estimate the rate of deferred weighted statistical probability convergence and accordingly establish a new result. Finally, an illustrative example is presented here by means of the generalized Fej?r convolution operators of a sequence of random variables in order to demonstrate that our established theorem is stronger than its traditional and statistical versions.


Filomat ◽  
2018 ◽  
Vol 32 (8) ◽  
pp. 2783-2792
Author(s):  
M. Mursaleen ◽  
Cemal Belen ◽  
Syed Rizvi

The concepts of ?-statistical convergence, statistical ?-convergence and strong ?q-convergence of single (ordinary) sequences have been introduced and studied in [M. Mursaleen, O.H.H. Edely, On the invariant mean and statistical convergence, App. Math. Lett. 22, (2011), 1700-1704] which were obtained by unifying the notions of density and invariant mean. In this paper, we extend these ideas from single to double sequences. We also use the concept of statistical ?-convergence of double sequences to prove a Korovkin-type approximation theorem for functions of two variables and give an example to show that our Korovkin-type approximation theorem is stronger than those proved earlier by other authors.


Sign in / Sign up

Export Citation Format

Share Document