scholarly journals Statistical Deferred Nörlund Summability and Korovkin-Type Approximation Theorem

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 636 ◽  
Author(s):  
Hari Mohan Srivastava ◽  
Bidu Bhusan Jena ◽  
Susanta Kumar Paikray

The concept of the deferred Nörlund equi-statistical convergence was introduced and studied by Srivastava et al. [Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM) 112 (2018), 1487–1501]. In the present paper, we have studied the notion of the deferred Nörlund statistical convergence and the statistical deferred Nörlund summability for sequences of real numbers defined over a Banach space. We have also established a theorem presenting a connection between these two interesting notions. Moreover, based upon our proposed methods, we have proved a new Korovkin-type approximation theorem with algebraic test functions for a sequence of real numbers on a Banach space and demonstrated that our theorem effectively extends and improves most of the earlier existing results (in classical and statistical versions). Finally, we have presented an example involving the generalized Meyer–König and Zeller operators of a real sequence demonstrating that our theorem is a stronger approach than its classical and statistical versions.

Author(s):  
H.M. Srivastava ◽  
Bidu Jena ◽  
Susanta Paikray

In the present work, we introduce and study the notion of statistical probability convergence for sequences of random variables as well as the concept of statistical convergence for sequences of real numbers, which are defined over a Banach space via deferred weighted summability mean. We first establish a theorem presenting a connection between them. Based upon our proposed methods, we then prove a new Korovkin-type approximation theorem with periodic test functions for a sequence of random variables on a Banach space and demonstrate that our theorem effectively extends and improves most (if not all) of the previously existing results (in statistical versions). We also estimate the rate of deferred weighted statistical probability convergence and accordingly establish a new result. Finally, an illustrative example is presented here by means of the generalized Fej?r convolution operators of a sequence of random variables in order to demonstrate that our established theorem is stronger than its traditional and statistical versions.


2010 ◽  
Vol 47 (3) ◽  
pp. 321-332
Author(s):  
Fadime Dirik ◽  
Kamil Demirci

In this study, using the concept of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}-statistical convergence for sequence of infinite matrices \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document} = (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}i ) with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}i = ( bnk ( i )) we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on C * which is the space of all 2π-periodic and continuous functions on ℝ, the set of all real numbers. Also we study the rates of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}-statistical convergence of approximating positive linear operators.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3749-3760 ◽  
Author(s):  
Ali Karaisa ◽  
Uğur Kadak

Upon prior investigation on statistical convergence of fuzzy sequences, we study the notion of pointwise ??-statistical convergence of fuzzy mappings of order ?. Also, we establish the concept of strongly ??-summable sequences of fuzzy mappings and investigate some inclusion relations. Further, we get an analogue of Korovkin-type approximation theorem for fuzzy positive linear operators with respect to ??-statistical convergence. Lastly, we apply fuzzy Bernstein operator to construct an example in support of our result.


2006 ◽  
Vol 43 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Esra Erkuş ◽  
Oktay Duman

In this study, using the concept of A-statistical convergence we investigate a Korovkin type approximation result for a sequence of positive linear operators defined on the space of all continuous real valued functions on any compact subset of the real m-dimensional space.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Abdullah Alotaibi

We define the notions of weighted λ,μ-statistical convergence of order γ1,γ2 and strongly weighted λ,μ-summability of γ1,γ2 for fuzzy double sequences, where 0<γ1,γ2≤1. We establish an inclusion result and a theorem presenting a connection between these concepts. Moreover, we apply our new concept of weighted λ,μ-statistical convergence of order γ1,γ2 to prove Korovkin-type approximation theorem for functions of two variables in a fuzzy sense. Finally, an illustrative example is provided with the help of q-analogue of fuzzy Bernstein operators for bivariate functions which shows the significance of our approximation theorem.


2019 ◽  
Vol 38 (7) ◽  
pp. 69-83
Author(s):  
Ayten Esi ◽  
Mustafa Kemal Ozdemir ◽  
Nagarajan Subramanian

We obtain a Korovkin-type approximation theorem for Bernstein Stancu polynomials of rough statistical convergence of triple sequences of positive linear operators of three variables from $H_{\omega}\left( K\right) $ to $C_{B}\left( K\right) $, where $K=[0,\infty)\times\lbrack0,\infty )\times\lbrack0,\infty)$ and $\omega$ is non-negative increasing function on $K$.


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3641-3647 ◽  
Author(s):  
Abdullah Alotaibi ◽  
M. Mursaleen

Aktu?lu and H. Gezer [Central European J. Math. 7 (2009), 558-567] introduced the concepts of lacunary equistatistical convergence, lacunary statistical pointwise convergence and lacunary statistical uniform convergence for sequences of functions. In this paper, we apply the notion of lacunary equistatistical convergence to prove a Korovkin type approximation theorem by using test functions 1, x/1-x,(x/1-x)2.


Sign in / Sign up

Export Citation Format

Share Document