scholarly journals Numerical analysis of melting of nano-enhanced phase change material in latent heat thermal energy storage system

2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 335-345 ◽  
Author(s):  
Sina Kashani ◽  
Esmail Lakzian ◽  
Kazem Lakzian ◽  
Mohammad Mastiani

The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials exhibit enhanced thermal conductivity in comparison to the base material. Calculation is performed for nanoparticle volume fraction from 0 to 0.08. In this study rectangular and cylindrical containers are modeled numerically and the effect of containers dimensions and nano particle volume fraction are studied. It has been found that the rectangular container requires half of the melting time as for the cylindrical container of the same volume and the same heat transfer area and also, higher nano particle volume fraction result in a larger solid fraction. The increase of the heat release rate of the nanoparticle-enhanced phase change materials shows its great potential for diverse thermal energy storage application.

Author(s):  
Sylvie Lorente

This work presents a theoretical and numerical analysis of thermal energy storage obtained from Phase Change Materials. We start with a study of the early stages of natural convection in the liquid, followed by an analysis of the entire duration of the melting process. Both are based on scale analysis. The numerical simulations cover the entire process, and validate all the features predicted by theory. Next we apply the methodology to the design of an efficient storage system made of a tank filled with a Phase Change Material like paraffin wax. A hot fluid circulates through pipes located within the tank; it is heated by means of a solar panel. The total volume of tubes is fixed. We apply Constructal design to determine the optimal allocation of the hot tubes so that each transfer mode is used at the best moment. We demonstrate that the overall energetic performance can be improved by endowing the system with freedom to morph.


Sign in / Sign up

Export Citation Format

Share Document