Volume 8: Heat Transfer and Thermal Engineering
Latest Publications


TOTAL DOCUMENTS

90
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791858431

Author(s):  
Puxuan Li ◽  
Steve J. Eckels

Accurate measurements of heat transfer and pressure drop play important roles in thermal designs in a variety of pipes and ducts. In this study, the convective heat transfer coefficient was measured with a semi-local surface average based on Newton’s Law of cooling. Flow and heat transfer data for different Reynolds numbers were collected and compared in a duct with smooth walls. Pressure drop was measured with a pressure transducer from OMEGA Engineering Inc. The experimental results were compared with numerical estimations generated in ANSYS Fluent. Fluent contains the broad physical modeling capabilities needed to model heat transfer and pressure drop in the duct. Thermal conduction and convection in the three-dimensional (3D) duct are simulated together. Special cares for selecting the viscosity models and the near-wall treatments are discussed. The goal of the paper is to find appropriate numerical models for simulating heat conduction, heat convection and pressure drop in the duct with different Reynolds numbers. The relationship between the heat transfer coefficient and Reynolds numbers is discussed. Heat flux and inlet temperature measured in the experiment are applied to the boundary conditions. The study provides the unique opportunity to verify the accuracy of numerical models on heat transfer and pressure drop in ANSYS Fluent.


Author(s):  
R. J. Yadav ◽  
Sandeep Kore ◽  
V. N. Riabhole

Heat transfer and pressure drop characteristics in a circular tube with twisted tapes have been investigated experimentally and numerically using different working fluids by many researchers for wide range of Reynolds number. The swirl was generated by tape inserts of various twist ratios. The various twist ratios are considered Many researchers formed generalized correlations to predict friction factors and convective heat transfer coefficients with twisted tapes in a tube for a wide range of Reynolds numbers and Prandtl numbers. Satisfactory agreement was obtained between the present correlations and the data of others validate the proposed correlations. The experimental or numerical predictions were compared with earlier correlations revealing good agreement between them. From the literature review it is observed that most studies are mainly focused on the heat transfer enhancement using twisted tape by experimental or numerical solution. An investigation with analytical approach is rarely reported. Therefore, the main aim of the present work is to form a correlation from theoretical approach for Nusselt number for circular tube with twisted tape. Application of dimensional analysis to heat transfer in tape generated swirl flow is carried out.


Author(s):  
Seok Ho Yoon ◽  
Jeong Heon Shin ◽  
Dong Ho Kim ◽  
Jun Seok Choi

In this paper, we present the ongoing process of the research and development of the Printed Circuit Heat Exchanger (PCHE) on Floating Storage Regasification Unit (FSRU). We performed a structural simulation work to find the optimal design of fluid channels on heat transfer plates, fabricated the heat transfer plates, and calculated the capacity of the PCHE using our analytical tool. In the simulation work, the plates having channels of 1 mm semicircular cross section were designed by varying the wall thickness between channels. At a temperature, 1373 K, compressing pressures were varied as 30, 85.7, and 500 bars. Based on the simulation results, we fabricated and bonded heat transfer plates using the diffusion bonding equipment which our department developed. Then, the sizing of PCHE was done with analytical calculation for the developing PCHE on FSRU.


Author(s):  
Khaled J. Hammad

Heat transfer enhancement in suddenly expanding annular pipe flows of a shear-thinning non-Newtonian fluid is studied within the steady laminar flow regime. Conservation of mass, momentum, and energy equations, along with the power-law constitutive model are numerically solved. The impact of inflow inertia, annular-nozzle-diameter-ratio, k, power-law index, n, and Prandtl numbers, is reported for: Re = {50, 100}, k = {0, 0.5, 0.7}; n = {1, 0.8, 0.6}; and Pr = {1, 10, 100}. Heat transfer enhancement downstream of the expansion plane, i.e., Nusselt numbers, Nu, higher than the fully developed value, in the downstream pipe, is observed only for Pr = 10 and 100. Higher Prandtl numbers, power-law index values, and annular diameter ratios, in general, reflect a more dramatic heat transfer augmentation downstream of the expansion plane. Heat transfer augmentation for Pr = 10 and 100, is more dramatic for suddenly expanding annular flows, in comparison with suddenly expanding pipe flow. For a given annular diameter ratio and Reynolds numbers, increasing the Prandtl number from Pr = 10 to Pr = 100, always results in higher peak Nu values, for both Newtonian and shear-thinning non-Newtonian flows.


Author(s):  
Cong Li ◽  
Yina Yao ◽  
Zhenxiang Tao ◽  
Rui Yang

To analyze the fire behavior in the dynamic pressure environment, a series of n-heptane pool fire experiments were conducted in an 8.11m × 4.16m × 1.67m simulated aircraft cargo compartment. The compartment is capable of mimicking flight environment from taking off to landing of the aircraft according to the standards of Federal Aviation Administration (FAA) by a pressure control system. Pool fires with 30cm diameter were tested under the dynamic pressure from 101kPa to 45kPa with various depressurization rates of 10kPa/min, 15kPa/min, 20kPa/min and 25kPa/min. Fire behavior such as burning rate, oscillation frequency and flame temperature were analyzed. The results revealed that the dynamic pressure influences the burning rate not only during the depressurization stage but also after depressurization. The oscillation frequency increases with the pressure decrease but has no relationship with depressurization rate. The flame temperature at different heights shows various tendencies with pressure.


Author(s):  
A. J. Al Edhari ◽  
C. C. Ngo

Thermal energy storage has been an area of research interest due to the need to store solar energy or excess energy for later use in many applications including district heating. The focus of a lot of research is on exotic and expensive storage media. This paper presents an experimental study of thermal energy storage using porous media readily available and commonly found in nature such as sand, soil, pebble rocks and gravel. This study also considers a simple and inexpensive thermal storage system which could be constructed easily and examines what could be done to increase the thermal storage performance. The thermal storage system examined in the present study was a thermal energy storage unit with embedded horizontal pipes carrying water as the heat transfer fluid for thermal charging. Different thermal storage configurations were examined by adjusting the thermal charging temperature and using different storage media. The temperature distribution within the storage media was monitored for 10 hours using a data acquisition system with K-type thermocouples. The results indicate that a thermal storage system using sand as storage media is slightly better compared with gravel or pebble rocks as storage media.


Author(s):  
Swarup Bag ◽  
M. Ruhul Amin

In this work, the thermal simulation of dissimilar fusion welding system is demonstrated by considering the phase lag effects in ultra-short pulse laser source. When the pulse duration is comparable with the electron relaxation time, the hyperbolic effect cannot be neglected in heat transfer analysis due to femtosecond laser. The non-Fourier effect is considered for heat transfer analysis assuming finite delay in development of temperature within the body. This delay is represented in terms of relaxation times connected to heat flux and temperature gradient. In the present work, the simulation has been proposed by developing 3D finite element based heat transfer model using dual phase lag effect. Since the experimental basis of transient temperature distribution in ultra-short pulse laser is extremely difficult or nearly impossible, the model results have been validated with literature reported results. The model has been used further for the simulation of temperature distribution in femtosecond fiber laser welding of dissimilar aluminum alloy and stainless steel. The results in terms of computed isotherm are compared with experimentally evaluated weld pool geometry for dissimilar materials from independent literature. The influence of other characteristic parameters like pulse frequency, pulse width and relaxation times are assessed for this simulation based study which will effectively reduce the costly experimental effort for differential influence of process parameters. A clear guideline of geometric shape and size of weld pool geometry and peak temperature of the welding system with reference to predictable laser parameters are the effective output of this simulation based study. It was observed that the peak temperature reached in a very short interval of time, in the order of nano-seconds. Such high heating or cooling rate impacts on the microstructural changes of the welded joint. In order to reach certain temperature, multiple pulses are required in the material processing of either very thin film or microwelding to keep the thermal shock distortion as low as possible.


Author(s):  
Azzam S. Salman ◽  
Jamil A. Khan

Experiments were conducted in a closed loop spray cooling system working with deionized water as a working fluid. This study was performed to investigate the effect of the spraying parameters, such as Sauter mean diameter (SMD), the droplet velocity, and the residual velocity on the spray cooling heat transfer in the non-boiling region. Thermal effects on plain and modified surfaces with circular grooves were examined under different operating conditions. The inlet pressure of the working fluid was varied from 78.6 kPa to 183.515kPa, and the inlet temperature was kept between 21–22 °C. The distance between the nozzle and the target surface 10 mm. The results showed that increasing the coolant inlet pressure increases the droplet velocity and the number of droplets produced while decreasing the droplet size. As a consequence of these changes, increasing inlet pressure improved the heat transfer characteristics of both surfaces.


Author(s):  
Kazi M. Rahman ◽  
M. Ruhul Amin ◽  
Ahsan Mian

In the field of additive manufacturing process, laser cladding is widely considered due to its cost effectiveness, small localized heat generation and full fusion to metals. Introducing nanoparticles with cladding metals produces metal matrix nanocomposites which in turn improves the material characteristics of the clad layer. The strength of the laser cladded reinforced metal matrix composite are dependent on the location and concentration of the nanoparticles infused in metals. The governing equations that control the fluid flow are standard incompressible Navier-Stokes and heat diffusion equation whereas the Euler-Lagrange approach has been considered for particle tracking. The mathematical formulation for solidification is adopted based on enthalpy porosity method. Liquid titanium has been considered as the initial condition where particle distribution has been assumed uniform throughout the geometry. During the solidification process of liquid titanium, particle flow and distribution has been observed until the entire geometry solidified. A numerical model implemented in a commercial software based on control volume method has been developed that allows to simulate the fluid flow during solidification as well as tracking nanoparticles during this process. The influence of the free surface of the melt pool has a high importance on the fluid flow as well as the influence of pure natural convection. Thus both buoyancy and Marangoni convection have been considered in terms of fluid flow in the molten region. A detailed parametric study has been conducted by changing the Marangoni number, convection heat transfer coefficient, constant temperature below the melting point of titanium and insulated boundary conditions to analyze the behavior of the nanoparticle movement. With the change in Marangoni number and solidification time, a significant change in particle distribution has been observed. The influence of increase in Marangoni number results in a higher concentration of nanoparticles in some portions of the geometry and lack of nanoparticles in rest of the geometry. The high concentration of nanoparticles decrease with a decrease in Marangoni number. Furthermore, an increase in the rate of solidification time limits the nanoparticle movement from its original position which results in different distribution patterns with respect to the solidification time.


Author(s):  
Nan Zhang ◽  
Yanchen Fu ◽  
Haoran Huang ◽  
Jie Wen ◽  
Nigeer Te

The flow resistance characteristics of aviation kerosene RP-3 in horizontal helical tubes at the supercritical pressure under heating condition are investigated. Both pressure drop and friction factor were examined under uniform heat flux of 50kW/m2−300kW/m2, mass flux from 786kg/m2s to 1375kg/m2s, and helical diameter from 20mm to 40mm. The influence of viscous factors on the resistance is analyzed to explore flow characteristics in a helical tube and provide a reference for the design of heat exchangers. Friction factor decreases with the increase of heat flux at low inlet temperatures 323K and 423K. It is explained that the viscosity changes more dramatically than the density. When the fluid inlet temperature is 523K and the fluid mean temperature Tb is close to pseudo-critical temperature, frictional flow resistance becomes significantly larger Tpc due to huge variations in thermal properties in the radical direction. The effect of centrifugal force makes the friction factor decline slowly. The friction factor goes up with the enlargement of mass flux when Tb>0.81Tpc. This phenomenon is caused by the larger radial velocity gradient under the large mass flux. Different helical diameters play the leading roles for the bending flow in the tubes.


Sign in / Sign up

Export Citation Format

Share Document