scholarly journals Integrating the flexibility of the average Serbian consumer as a virtual storage option into the planning of energy systems

2014 ◽  
Vol 18 (3) ◽  
pp. 743-754 ◽  
Author(s):  
Ilija Batas-Bjelic ◽  
Ivan Skokljev ◽  
Tomislav Puksec ◽  
Goran Krajacic ◽  
Neven Duic

With the integration of more variable renewable energy, the need for storage is growing. Rather than utility scale storage, smart grid technology (not restricted, but mainly involving bidirectional communication between the supply and demand side and dynamic pricing) enables flexible consumption to be a virtual storage alternative for moderation of the production of variable renewable energy sources on the micro grid level. A study, motivated with energy loss allocation, electric demand and the legal framework that is characteristic for the average Serbian household, was performed using the HOMER software tool. The decision to shift or build deferrable load rather than sell on site generated energy from variable renewable energy sources to the grid was based on the consumer's net present cost minimization. Based on decreasing the grid sales hours of the micro grid system to the transmission grid from 3,498 to 2,009, it was shown that the demand response could be included in long-term planning of the virtual storage option. Demand responsive actions that could be interpreted as storage investment costs were quantified to 1?2 per year in this article.

Author(s):  
Edgar Ubaldo Pena Sanchez ◽  
Severin David Ryberg ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

Due to the increasing global importance of decarbonizing human activities, especially the production of electricity, the optimal deployment of renewable energy technologies will play a crucial role in future energy systems. To accomplish this, particular attention must be accorded to the geospatial and temporal distribution of variable renewable energy sources (VRES) such as wind and solar radiation in order to match electricity supply and demand. This study presents a techno-economical assessment of four energy technologies in the hypothetical context of Mexico in 2050, namely: onshore and offshore wind turbines, and open-field and rooftop photovoltaics. A land eligibility analysis incorporating physical, environmental, and socio-political eligibility constraints and individual turbine and photovoltaic park simulations, drawing on 39 years of climate data, is performed for individual sites across the country in an effort to determine the installable potential and the associated levelized costs of electricity. The results reveal that up to 54 PWh of renewable electricity can be produced as a cost of less than 70 EUR/MWh. Around 91% (49 PWh) of this would originate from 23 TW of open-field photovoltaic parks that could occupy up to 578,000 km2 of eligible land across the country. The remaining 9% (4.8 PWh) could be produced by 1.9 TW of onshore wind installations allocated to approximately 68,500 km2 of eligible land that is almost fully adjacent to three mountainous zones. The combination of rooftop photovoltaic and offshore wind turbines account for a very small share of less than 0.03% of the overall techno-economical potential.


2018 ◽  
Vol 108 ◽  
pp. 259-279 ◽  
Author(s):  
Alexander Zerrahn ◽  
Wolf-Peter Schill ◽  
Claudia Kemfert

To make micro grid with renewable energy and to over come the technical challenges and economy base and policy and regulatory challenges . From the natural wastage we can generate the Electricity. Thus, the Electrical Power or Electricity is available with a low cost and pollution free to anyplace in the world at all times. This process divulge a unequaled step in electricity generation and this type of generation is maintain the ecological balance. We can have an uninterrupted power supply irrespective of the natural condition without any kind of environmental pollution. More influence this process relent the less production cost for electricity generation. Micro grids have long been used in remote areas to power off-grid villages, military operations or industrial projects. But increasingly they are being used in cities or towns, in urban centers. Here we try a proto type of micro grid with renewable energy sources.


2018 ◽  
Vol 125 ◽  
pp. 578-589 ◽  
Author(s):  
D. Raynaud ◽  
B. Hingray ◽  
B. François ◽  
J.D. Creutin

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 182 ◽  
Author(s):  
Lukas Kriechbaum ◽  
Thomas Kienberger

In developed countries like Austria the renewable energy potential might outpace the demand. This requires primary energy efficiency measures as well as an energy system design that enables the integration of variable renewable energy sources. Municipal energy systems, which supply customers with heat and electricity, will play an important role in this task. The cumulative exergy consumption methodology considers resource consumption from the raw material to the final product. It includes the exergetic expenses for imported energy as well as for building the energy infrastructure. In this paper, we determine the exergy optimal energy system design of an exemplary municipal energy system by using cumulative exergy consumption minimisation. The results of a case study show that well a linked electricity and heat system using heat pumps, combined heat power plants and battery and thermal storages is necessary. This enables an efficient supply and also provides the necessary flexibilities for integrating variable renewable energy sources.


Sign in / Sign up

Export Citation Format

Share Document