scholarly journals Optimal Municipal Energy System Design and Operation Using Cumulative Exergy Consumption Minimisation

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 182 ◽  
Author(s):  
Lukas Kriechbaum ◽  
Thomas Kienberger

In developed countries like Austria the renewable energy potential might outpace the demand. This requires primary energy efficiency measures as well as an energy system design that enables the integration of variable renewable energy sources. Municipal energy systems, which supply customers with heat and electricity, will play an important role in this task. The cumulative exergy consumption methodology considers resource consumption from the raw material to the final product. It includes the exergetic expenses for imported energy as well as for building the energy infrastructure. In this paper, we determine the exergy optimal energy system design of an exemplary municipal energy system by using cumulative exergy consumption minimisation. The results of a case study show that well a linked electricity and heat system using heat pumps, combined heat power plants and battery and thermal storages is necessary. This enables an efficient supply and also provides the necessary flexibilities for integrating variable renewable energy sources.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2193 ◽  
Author(s):  
Dominik Dominković ◽  
Greg Stark ◽  
Bri-Mathias Hodge ◽  
Allan Pedersen

Although it can be complex to integrate variable renewable energy sources such as wind power and photovoltaics into an energy system, the potential benefits are large, as it can help reduce fuel imports, balance the trade, and mitigate the negative impacts in terms of climate change. In order to try to integrate a very large share of variable renewable energy sources into the energy system, an integrated energy planning approach was used, including ice storage in the cooling sector, a smart charging option in the transport sector, and an excess capacity of reverse osmosis technology that was utilised in order to provide flexibility to the energy system. A unit commitment and economic dispatch tool (PLEXOS) was used, and the model was run with both 5 min and 1 h time resolutions. The case study was carried out for a typical Caribbean island nation, based on data derived from measured data from Aruba. The results showed that 78.1% of the final electricity demand in 2020 was met by variable renewable energy sources, having 1.0% of curtailed energy in the energy system. The total economic cost of the modelled energy system was similar to the current energy system, dominated by the fossil fuel imports. The results are relevant for many populated islands and island nations.


2019 ◽  
Vol 1 (3) ◽  
pp. 174-180 ◽  
Author(s):  
Bandiyah Sri Aprillia ◽  
Desri Kristina Silalahi ◽  
Muhammad Agung Foury Rigoursyah

Electricity demand increases along with an increasing population. Renewable energy power plants are experiencing an increase in their use. This increase occurred because the world's electricity needs are rising every year, so the development of renewable energy power plants continues. Indonesia's state-owned power plants supply electricity more from non-renewable energy sources than renewable energy sources. Therefore, there is a need for renewable energy sources that can supply electricity in Indonesia. This research discusses an efficient renewable energy system for residential and the total installation costs for on-grid systems in Bandung, Indonesia. The research method used is collecting solar radiation data, equipment specifications and other data needed and then optimized. The simulation model uses HOMER software. HOMER is used to determine the best technically estimated cost, payback period, and NPC. Based on the optimization results, the system configuration can supply the electricity load 45.5% of daily load consumption with a total NPC cost is 75,300,000 million with a payback period of 7 years. In addition, the on-grid system produces 1400 kg of carbon dioxide (CO2) emissions per year from diesel generators, lower than the CO2 emissions from systems that only comprise diesel generators reaching 114 tons per year.    


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 843 ◽  
Author(s):  
Christoph Sejkora ◽  
Lisa Kühberger ◽  
Fabian Radner ◽  
Alexander Trattner ◽  
Thomas Kienberger

The energy transition from fossil-based energy sources to renewable energy sources of an industrialized country is a big challenge and needs major systemic changes to the energy supply. Such changes require a holistic view of the energy system, which includes both renewable potentials and consumption. Thereby exergy, which describes the quality of energy, must also be considered. In this work, the determination and analysis of such a holistic view of a country are presented, using Austria as an example. The methodology enables the calculation of the spatially resolved current exergy consumption, the spatially resolved current useful exergy demand and the spatially resolved technical potential of renewable energy sources (RES). Top-down and bottom-up approaches are combined in order to increase accuracy. We found that, currently, Austria cannot self-supply with exergy using only RES. Therefore, Austria should increase the efficiency of its energy system, since the overall exergy efficiency is only at 34%. The spatially resolved analysis shows that in Austria the exergy potential of RES is rather evenly distributed. In contrast, the exergy consumption is concentrated in urban and industrial areas. Therefore, the future energy infrastructure must compensate for these spatial discrepancies.


Author(s):  
A. T. D. Perera ◽  
Vahid M. Nik ◽  
D. Mauree ◽  
J.-L. Scartezzini

Integration of non-dispatchable renewable energy sources such as wind and solar into the grid is challenging due to the stochastic nature of energy sources. Hence, electrical hubs (EH) and virtual power plants that combine non-dispatchable energy sources, energy storage and dispatchable energy sources such as internal combustion generators and micro gas turbines are getting popular. However, designing such energy systems considering the electricity demand of a neighborhood, curtailments for grid interactions and real time pricing (RTP) of the main utility grid (MUG) is a difficult exercise. Seasonal and hourly variation of electricity demand, potential for each non-dispatchable energy source and RTP of MUG needs to be considered when designing the energy system. Representation of dispatch strategy plays a major role in this process where simultaneous optimization of system design and dispatch strategy is required. This study presents a bi-level dispatch strategy based on reinforced learning for simultaneous optimization of system design and operation strategy of an EH. Artificial Neural Network (ANN) was combined with a finite state controller to obtain the operating state of the system. Pareto optimization is conducted considering, lifecycle cost and system autonomy to obtain optimum system design using evolutionary algorithm.


2006 ◽  
Vol 10 (4) ◽  
pp. 7-16 ◽  
Author(s):  
Simeon Oka ◽  
Aleksandar Sedmak ◽  
Maja Djurovic-Petrovic

Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat) transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004) and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005), have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3138 ◽  
Author(s):  
Ghaeth Fandi ◽  
Vladimír Krepl ◽  
Ibrahim Ahmad ◽  
Famous Igbinovia ◽  
Tatiana Ivanova ◽  
...  

Electrical energy is one of the most important daily needs. Shortage of energy can be very dangerous for any society. This can affect the standard of living and quality of life of the people and even endanger the lives of those in hospitals, and so forth. Developed countries do not face such risks in general because they have well organized electrical systems and high energy security. The developing countries are faced daily with electric system collapses, especially in the case of wars, where many parts of the electrical grid in the country can be damaged and fuel transmission lines for generators cut off. Urban areas in developing countries should have a strategic plan to deal with any unexpected occurrence of energy shortages using any available renewable energy sources. City of Latakia is located in the region which has been suffering from the consequences of war for more than six years. The fact that a high number of migrants from other cities have come to Latakia along with a lack of fuel makes the energy shortage in the city worse. An emergency system could use the cheapest available renewable energy sources in addition to few big portable generators to provide an acceptable energy supply for the most needed requirements of daily life.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3900
Author(s):  
Lukas Kriechbaum ◽  
Philipp Gradl ◽  
Romeo Reichenhauser ◽  
Thomas Kienberger

Efficiency measures and the integration of renewable energy sources are key to achieving a sustainable society. The cumulative exergy consumption describes the resource consumption of a product from the raw material to the final utilisation. It includes the exergy expenses for energy infrastructure as well as the imported energy. Since consumers and renewable potentials are usually in different locations, grid restrictions and energy flows have a significant impact on the optimal energy system design. In this paper we will use cumulative exergy minimisation together with load flow calculations to determine the optimal system design of a multi-cell municipal energy system. Two different load flow representations are compared. The network flow model uses transmission efficiencies for heat, gas and electricity flows. The power flow representation uses a linear DC approximated load flow for electricity flows and a MILP (mixed integer linear programming) representation for heat and gas flows to account for the nonlinear pressure loss relation. Although both representations provide comparable overall results, the installed capacities in the individual cells differ significantly. The differences are greatest in well meshed cells, while they are small in stub lines.


Sign in / Sign up

Export Citation Format

Share Document