scholarly journals A modified reproducing kernel method for a time-fractional telegraph equation

2017 ◽  
Vol 21 (4) ◽  
pp. 1575-1580 ◽  
Author(s):  
Yulan Wang ◽  
Mingjing Du ◽  
Chaolu Temuer

The aim of this work is to obtain a numerical solution of a time-fractional telegraph equation by a modified reproducing kernel method. Two numerical examples are given to show that the present method overcomes the drawback of the traditional reproducing kernel method and it is an easy and effective method.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Li ◽  
YuLan Wang ◽  
Fugui Tan ◽  
Xiaohui Wan ◽  
Tingfang Nie

In (Wang et al., 2011), we give an iterative reproducing kernel method (IRKM). The main contribution of this paper is to use an IRKM (Wang et al., 2011), in singular perturbation problems with boundary layers. Two numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method indicate that the method is simple and effective.



2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kiliçman

We propose a reproducing kernel method for solving the telegraph equation with initial conditions based on the reproducing kernel theory. The exact solution is represented in the form of series, and some numerical examples have been studied in order to demonstrate the validity and applicability of the technique. The method shows that the implement seems easy and produces accurate results.



2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kılıçman

We investigate the effectiveness of reproducing kernel method (RKM) in solving partial differential equations. We propose a reproducing kernel method for solving the telegraph equation with initial and boundary conditions based on reproducing kernel theory. Its exact solution is represented in the form of a series in reproducing kernel Hilbert space. Some numerical examples are given in order to demonstrate the accuracy of this method. The results obtained from this method are compared with the exact solutions and other methods. Results of numerical examples show that this method is simple, effective, and easy to use.



2011 ◽  
Author(s):  
Kemal Özen ◽  
Kamil Oruçoğlu ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras ◽  
...  


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kiliçman

We propose a reproducing kernel method for solving the KdV equation with initial condition based on the reproducing kernel theory. The exact solution is represented in the form of series in the reproducing kernel Hilbert space. Some numerical examples have also been studied to demonstrate the accuracy of the present method. Results of numerical examples show that the presented method is effective.



2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaoli Zhang ◽  
Haolu Zhang ◽  
Lina Jia ◽  
Yulan Wang ◽  
Wei Zhang

In this paper, we structure some new reproducing kernel spaces based on Jacobi polynomial and give a numerical solution of a class of time fractional order diffusion equations using piecewise reproducing kernel method (RKM). Compared with other methods, numerical results show the reliability of the present method.





2021 ◽  
Vol 7 (1) ◽  
pp. 1460-1469
Author(s):  
Jian Zhang ◽  
◽  
Jinjiao Hou ◽  
Jing Niu ◽  
Ruifeng Xie ◽  
...  

<abstract><p>Here a scheme for solving the nonlinear integral equation of Volterra-Hammerstein type is given. We combine the related theories of homotopy perturbation method (HPM) with the simplified reproducing kernel method (SRKM). The nonlinear system can be transformed into linear equations by utilizing HPM. Based on the SRKM, we can solve these linear equations. Furthermore, we discuss convergence and error analysis of the HPM-SRKM. Finally, the feasibility of this method is verified by numerical examples.</p></abstract>



Sign in / Sign up

Export Citation Format

Share Document