scholarly journals A high order approach for nonlinear Volterra-Hammerstein integral equations

2021 ◽  
Vol 7 (1) ◽  
pp. 1460-1469
Author(s):  
Jian Zhang ◽  
◽  
Jinjiao Hou ◽  
Jing Niu ◽  
Ruifeng Xie ◽  
...  

<abstract><p>Here a scheme for solving the nonlinear integral equation of Volterra-Hammerstein type is given. We combine the related theories of homotopy perturbation method (HPM) with the simplified reproducing kernel method (SRKM). The nonlinear system can be transformed into linear equations by utilizing HPM. Based on the SRKM, we can solve these linear equations. Furthermore, we discuss convergence and error analysis of the HPM-SRKM. Finally, the feasibility of this method is verified by numerical examples.</p></abstract>


2021 ◽  
Vol 26 (3) ◽  
pp. 469-478
Author(s):  
Jinjiao Hou ◽  
Jing Niu ◽  
Welreach Ngolo

In this paper, a new method combining the simplified reproducing kernel method (SRKM) and the homotopy perturbation method (HPM) to solve the nonlinear Volterra-Fredholm integro-differential equations (V-FIDE) is proposed. Firstly the HPM can convert nonlinear problems into linear problems. After that we use the SRKM to solve the linear problems. Secondly, we prove the uniform convergence of the approximate solution. Finally, some numerical calculations are proposed to verify the effectiveness of the approach.



2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Minqiang Xu ◽  
Jing Niu ◽  
Li Guo

This paper is concerned with a high-order numerical scheme for nonlinear systems of second-order boundary value problems (BVPs). First, by utilizing quasi-Newton’s method (QNM), the nonlinear system can be transformed into linear ones. Based on the standard Lobatto orthogonal polynomials, we introduce a high-order Lobatto reproducing kernel method (LRKM) to solve these linear equations. Numerical experiments are performed to investigate the reliability and efficiency of the presented method.



2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kiliçman

We propose a reproducing kernel method for solving the KdV equation with initial condition based on the reproducing kernel theory. The exact solution is represented in the form of series in the reproducing kernel Hilbert space. Some numerical examples have also been studied to demonstrate the accuracy of the present method. Results of numerical examples show that the presented method is effective.



2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Li ◽  
YuLan Wang ◽  
Fugui Tan ◽  
Xiaohui Wan ◽  
Tingfang Nie

In (Wang et al., 2011), we give an iterative reproducing kernel method (IRKM). The main contribution of this paper is to use an IRKM (Wang et al., 2011), in singular perturbation problems with boundary layers. Two numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method indicate that the method is simple and effective.



2017 ◽  
Vol 65 (2) ◽  
pp. 151-155
Author(s):  
MM Hasan ◽  
MA Matin

In this paper, we apply Homotopy perturbation method (HPM) for obtaining approximate solution of nonlinear Fredholm integral equation of the second kind. Finally, some numerical examples are provided, and the obtained numerical approximations are compared with the corresponding exact solution. Dhaka Univ. J. Sci. 65(2): 151-155, 2017 (July)



2017 ◽  
Vol 21 (4) ◽  
pp. 1575-1580 ◽  
Author(s):  
Yulan Wang ◽  
Mingjing Du ◽  
Chaolu Temuer

The aim of this work is to obtain a numerical solution of a time-fractional telegraph equation by a modified reproducing kernel method. Two numerical examples are given to show that the present method overcomes the drawback of the traditional reproducing kernel method and it is an easy and effective method.



2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kiliçman

We propose a reproducing kernel method for solving the telegraph equation with initial conditions based on the reproducing kernel theory. The exact solution is represented in the form of series, and some numerical examples have been studied in order to demonstrate the validity and applicability of the technique. The method shows that the implement seems easy and produces accurate results.



Sign in / Sign up

Export Citation Format

Share Document