scholarly journals The piecewise reproducing kernel method for the time variable fractional order advection-reaction-diffusion equations

2021 ◽  
pp. 21-21
Author(s):  
Dan-Dan Dai ◽  
Ting-Ting Ban ◽  
Yu-Lan Wang ◽  
Wei Zhang

This paper structures some new reproductive kernel spaces based on Legendre polynomials to solve time variable order fractional advection-reaction-diffusion equations. Some examples are given to show the effectiveness and reliability of the method.

2020 ◽  
Vol 24 (4) ◽  
pp. 2553-2559 ◽  
Author(s):  
Wei Zhang ◽  
Yulan Wang ◽  
Meichun Wang

The variable-order fractional calculus has become a useful mathematical frame-work to describe a complex reaction-diffusion process. It is very hard to solve the problem, and there is almost no analytical method available in open literature. In this article, the reproducing kernel method is proposed for this purpose, and some examples show that the method is of high precision.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaoli Zhang ◽  
Haolu Zhang ◽  
Lina Jia ◽  
Yulan Wang ◽  
Wei Zhang

In this paper, we structure some new reproducing kernel spaces based on Jacobi polynomial and give a numerical solution of a class of time fractional order diffusion equations using piecewise reproducing kernel method (RKM). Compared with other methods, numerical results show the reliability of the present method.


2020 ◽  
Vol 4 (2) ◽  
pp. 27 ◽  
Author(s):  
Onur Saldır ◽  
Mehmet Giyas Sakar ◽  
Fevzi Erdogan

In this research, obtaining of approximate solution for fractional-order Burgers’ equation will be presented in reproducing kernel Hilbert space (RKHS). Some special reproducing kernel spaces are identified according to inner products and norms. Then an iterative approach is constructed by using kernel functions. The convergence of this approach and its error estimates are given. The numerical algorithm of the method is presented. Furthermore, numerical outcomes are shown with tables and graphics for some examples. These outcomes demonstrate that the proposed method is convenient and effective.


2017 ◽  
Vol 103 ◽  
pp. 578-587 ◽  
Author(s):  
Sajjad Ali ◽  
Samia Bushnaq ◽  
Kamal Shah ◽  
Muhammad Arif

Sign in / Sign up

Export Citation Format

Share Document