scholarly journals Fuzzy stochastic inventory model for deteriorating item

2017 ◽  
Vol 27 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Rahul Waliv ◽  
Hemant Umap

A multi item profit maximization inventory model is developed in fuzzy stochastic environment. Demand is taken as Stock dependent demand. Available storage space is assumed to be imprecise and vague in nature. Impreciseness has been expressed by linear membership function. Purchasing cost and investment constraint are considered to be random and their randomness is expressed by normal distribution. The model has been formulated as a fuzzy stochastic programming problem and reduced to corresponding equivalent fuzzy linear programming problem. The model has been solved by using fuzzy linear programming technique and illustrated numerically.

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
A. Nagoorgani ◽  
J. Kavikumar ◽  
K. Ponnalagu

In real life, information available for certain situations is vague and such uncertainty is unavoidable. One possible solution is to consider the knowledge of experts on the parameters involved as intuitionistic fuzzy data. We examine a linear programming problem in which all the coefficients are intuitionistic in nature. An approach is presented to solve an intuitionistic fuzzy linear programming problem. In this proposed approach, a procedure for allocating limited resources effectively among competing demands is developed. An example is given to highlight the illustrated study.


2021 ◽  
Vol 10 (12) ◽  
pp. 3699-3723
Author(s):  
L. Kané ◽  
M. Konaté ◽  
L. Diabaté ◽  
M. Diakité ◽  
H. Bado

The present paper aims to propose an alternative solution approach in obtaining the fuzzy optimal solution to a fuzzy linear programming problem with variables given as fuzzy numbers with minimum uncertainty. In this paper, the fuzzy linear programming problems with variables given as fuzzy numbers is transformed into equivalent interval linear programming problems with variables given as interval numbers. The solutions to these interval linear programming problems with variables given as interval numbers are then obtained with the help of linear programming technique. A set of six random numerical examples has been solved using the proposed approach.


Author(s):  
Srikumar ACHARYA ◽  
Mitali Madhumita ACHARYA

The multi-choice programming allows the decision maker to consider multiple number of resources for each constraint or goal. Multi-choice linear programming problem can not be solved directly using the traditional linear programming technique. However, to deal with the multi-choice parameters, multiplicative terms of binary variables may be used in the transformed mathematical model. Recently, Biswal and Acharya (2009) have proposed a methodology to transform the multi-choice linear programming problem to an equivalent mathematical programming model, which can accommodate a maximum of eight goals in righthand side of any constraint. In this paper we present two models as generalized transformation of the multi-choice linear programming problem. Using any one of the transformation techniques a decision maker can handle a parameter with nite number of choices. Binary variables are introduced to formulate a non-linear mixed integer programming model. Using a non-linear programming software optimal solution of the proposed model can be obtained. Finally, a numerical example is presented to illustrate the transformation technique and the solution procedure.


1999 ◽  
Vol 12 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Lakhdar Aggoun ◽  
Lakdere Benkherouf ◽  
Lotfi Tadj

In this paper, we propose a single-product, discrete time inventory model for perishable items. Inventory levels are reviewed periodically and units in stock have a maximum lifetime of M periods. It is assumed that the dynamics of the inventory level is driven by a parameter process (reflecting perishability) and demands. By observing the history of the inventory level we obtain the conditional distribution of the perishability parameter by using the change of measure techniques. A special case is also presented.


Sign in / Sign up

Export Citation Format

Share Document