Rapid Stimulation of Plant Cell Elongation by Hormonal and Non-Hormonal Factors

BioScience ◽  
1973 ◽  
Vol 23 (12) ◽  
pp. 711-718 ◽  
Author(s):  
Michael L. Evans
2006 ◽  
Vol 54 (1) ◽  
pp. 91-100 ◽  
Author(s):  
S. Lewicka ◽  
M. Pietruszka
Keyword(s):  

Neuroscience ◽  
2017 ◽  
Vol 346 ◽  
pp. 94-101 ◽  
Author(s):  
S. Gasparini ◽  
M.R. Melo ◽  
G.F. Leite ◽  
P.A. Nascimento ◽  
G.M.F. Andrade-Franzé ◽  
...  

1985 ◽  
Vol 2 (4) ◽  
pp. 317-365 ◽  
Author(s):  
Michael L. Evans ◽  
Robert E. Cleland
Keyword(s):  

1992 ◽  
Vol 127 (6) ◽  
pp. 542-546 ◽  
Author(s):  
Ian O'Reilly ◽  
Michael P Murphy

Injection of L-3,5-diiodothyronine (T2) into rats made hypothyroid by 6-n-propyl-2-thiouracil (PTU) increased the respiration rates of subsequently isolated liver mitochondria; this stimulation of respiration by T2 occurred in the presence of cycloheximide and is therefore independent of protein synthesis on cytoplasmic ribosomes. Injection of T3 into PTU-treated rats had a lesser effect than T2 on the respiration rates of subsequently isolated mitochondria; as PTU is an inhibitor of 5′-iodothyronine deiodinases, which convert T3 into T2 in vivo, the rapid stimulation of mitochondrial respiration by T3, which has been shown in a range of systems, may not be due directly to T3 itself, but may be mediated by its deiodination product T2. Injection of T2, or T3, into hypothyroid or euthyroid rats had no effect on the percentage activity of mitochondrial pyruvate hydrogenase assayed 30 min later. The amount of active pyruvate dehydrogenase is regulated by changes in mitochondrial calcium concentration and matrix ATP/ADP ratio; therefore these parameters are not persistently affected by treatment with T3 or T2. In addition, the total amount of pyruvate dehydrogenase present was the same in euthyroid and hypothyroid rats, indicating that the expression of this enzyme is not stringently controlled by thyroid hormone status.


1985 ◽  
Vol 228 (3) ◽  
pp. 727-733 ◽  
Author(s):  
D H Williamson ◽  
V Ilic ◽  
R G Jones

The rapid stimulation of lipogenesis in mammary gland that occurs on re-feeding starved lactating rats with a chow diet was decreased (60%) by injection of mercaptopicolinic acid, an inhibitor of hepatic gluconeogenesis at the phosphoenolpyruvate carboxykinase step. Mercaptopicolinate had no effect on lipogenesis in mammary glands of fed lactating rats. The inhibition of lipogenesis persisted in vitro when acini from mammary glands of re-fed rats treated with mercaptopicolinate were incubated with [1-14C]glucose. Mercaptopicolinate added in vitro had no significant effect on lipogenesis in acini from starved-re-fed lactating rats. Mercaptopicolinate prevented the deposition of glycogen and increased the rate of lipogenesis in livers of starved-re-fed lactating rats, whereas it had no significant effect on livers of fed lactating rats. Administration of intraperitoneal glucose restored the rate of mammary-gland lipogenesis in re-fed rats treated with mercaptopicolinate to the values for re-fed rats. Hepatic glycogen deposition was also restored, and the rate of hepatic lipogenesis was stimulated 5-fold. It is concluded that stimulation of mammary-gland lipogenesis on re-feeding with a chow diet after a period of starvation is in part dependent on continued hepatic gluconeogenesis during the absorptive period. Possible sources of the glucose precursors are discussed.


Sign in / Sign up

Export Citation Format

Share Document