phosphoenolpyruvate carboxykinase
Recently Published Documents


TOTAL DOCUMENTS

1648
(FIVE YEARS 135)

H-INDEX

79
(FIVE YEARS 6)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Emine Can ◽  
Jessica A. M. Bastiaansen ◽  
Dominique-Laurent Couturier ◽  
Rolf Gruetter ◽  
Hikari A. I. Yoshihara ◽  
...  

AbstractHyperpolarized [1-13C]pyruvate enables direct in vivo assessment of real-time liver enzymatic activities by 13C magnetic resonance. However, the technique usually requires the injection of a highly supraphysiological dose of pyruvate. We herein demonstrate that liver metabolism can be measured in vivo with hyperpolarized [1-13C]pyruvate administered at two- to three-fold the basal plasma concentration. The flux through pyruvate dehydrogenase, assessed by 13C-labeling of bicarbonate in the fed condition, was found to be saturated or partially inhibited by supraphysiological doses of hyperpolarized [1-13C]pyruvate. The [13C]bicarbonate signal detected in the liver of fasted rats nearly vanished after treatment with a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, indicating that the signal originates from the flux through PEPCK. In addition, the normalized [13C]bicarbonate signal in fasted untreated animals is dose independent across a 10-fold range, highlighting that PEPCK and pyruvate carboxylase are not saturated and that hepatic gluconeogenesis can be directly probed in vivo with hyperpolarized [1-13C]pyruvate.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Miguel Rebollo-Hernanz ◽  
Yolanda Aguilera ◽  
Maria A. Martin-Cabrejas ◽  
Elvira Gonzalez de Gonzalez de Mejia

The cocoa shell is a by-product that may be revalorized as a source of bioactive compounds to prevent chronic cardiometabolic diseases. This study aimed to investigate the phytochemicals from the cocoa shell as targeted compounds for activating fibroblast growth factor 21 (FGF21) signaling and regulating non-alcoholic fatty liver disease (NAFLD)-related biomarkers linked to oxidative stress, mitochondrial function, and metabolism in hepatocytes. HepG2 cells treated with palmitic acid (PA, 500 µmol L−1) were used in an NAFLD cell model. Phytochemicals from the cocoa shell (50 µmol L−1) and an aqueous extract (CAE, 100 µg mL−1) enhanced ERK1/2 phosphorylation (1.7- to 3.3-fold) and FGF21 release (1.4- to 3.4-fold) via PPARα activation. Oxidative stress markers were reduced though Nrf-2 regulation. Mitochondrial function (mitochondrial respiration and ATP production) was protected by the PGC-1α pathway modulation. Cocoa shell phytochemicals reduced lipid accumulation (53–115%) and fatty acid synthase activity (59–93%) and prompted CPT-1 activity. Glucose uptake and glucokinase activity were enhanced, whereas glucose production and phosphoenolpyruvate carboxykinase activity were diminished. The increase in the phosphorylation of the insulin receptor, AKT, AMPKα, mTOR, and ERK1/2 conduced to the regulation of hepatic mitochondrial function and energy metabolism. For the first time, the cocoa shell phytochemicals are proved to modulate FGF21 signaling. Results demonstrate the in vitro preventive effect of the phytochemicals from the cocoa shell on NAFLD.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Lei Xu ◽  
Wenyi Zhang ◽  
Hui Qiao ◽  
Sufei Jiang ◽  
Yiwei Xiong ◽  
...  

As the basic element of aerobic animal life, oxygen participates in most physiological activities of animals. Hypoxia stress is often the subject of aquatic animal research. Macrobrachium nipponense, an economically important aquatic animal in southern China, has been affected by hypoxia for many years and this has resulted in a large amount of economic loss due to its sensitivity to hypoxia; Metabolism and transcriptome data were combined in the analysis of the hepatopancreas of M. nipponense in different physiological states under hypoxia; A total of 108, 86, and 48 differentially expressed metabolites (DEMs) were found in three different comparisons (survived, moribund, and dead shrimps), respectively. Thirty-two common DEMs were found by comparing the different physiological states of M. nipponense with the control group in response to hypoxia. Twelve hypoxia-related genes were identified by screening and analyzing common DEMs. GTP phosphoenolpyruvate carboxykinase (PEPCK) was the only differentially expressed gene that ranked highly in transcriptome analysis combined with metabolome analysis. PEPCK ranked highly both in transcriptome analysis and in combination with metabolism analysis; therefore, it was considered to have an important role in hypoxic response. This manuscript fills the one-sidedness of the gap in hypoxia transcriptome analysis and reversely deduces several new genes related to hypoxia from metabolites. This study contributes to the clarification of the molecular process associated with M. nipponense under hypoxic stress.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7629
Author(s):  
Rania Alaaeldin ◽  
Iman A. M. Abdel-Rahman ◽  
Heba Ali Hassan ◽  
Nancy Youssef ◽  
Ahmed E. Allam ◽  
...  

Insulin resistance contributes to several disorders including type 2 diabetes and cardiovascular diseases. Carpachromene is a natural active compound that inhibits α-glucosidase enzyme. The aim of the present study is to investigate the potential activity of carpachromene on glucose consumption, metabolism and insulin signalling in a HepG2 cells insulin resistant model. A HepG2 insulin resistant cell model (HepG2/IRM) was established. Cell viability assay of HepG2/IRM cells was performed after carpachromene/metformin treatment. Glucose concentration and glycogen content were determined. Western blot analysis of insulin receptor, IRS1, IRS2, PI3k, Akt, GSK3, FoxO1 proteins after carpachromene treatment was performed. Phosphoenolpyruvate carboxykinase (PEPCK) and hexokinase (HK) enzymes activity was also estimated. Viability of HepG2/IRM cells was over 90% after carpachromene treatment at concentrations 6.3, 10, and 20 µg/mL. Treatment of HepG2/IRM cells with carpachromene decreased glucose concentration in a concentration- and time-dependant manner. In addition, carpachromene increased glycogen content of HepG2/IRM cells. Moreover, carpachromene treatment of HepG2/IRM cells significantly increased the expression of phosphorylated/total ratios of IR, IRS1, PI3K, Akt, GSK3, and FoxO1 proteins. Furthermore, PEPCK enzyme activity was significantly decreased, and HK enzyme activity was significantly increased after carpachromene treatment. The present study examined, for the first time, the potential antidiabetic activity of carpachromene on a biochemical and molecular basis. It increased the expression ratio of insulin receptor and IRS1 which further phosphorylated/activated PI3K/Akt pathway and phosphorylated/inhibited GSK3 and FoxO1 proteins. Our findings revealed that carpachromene showed central molecular regulation of glucose metabolism and insulin signalling via IR/IRS1/ PI3K/Akt/GSK3/FoxO1 pathway.


Author(s):  
Haibo Dong ◽  
Yue Feng ◽  
Yang Yang ◽  
Yun Hu ◽  
Yimin Jia ◽  
...  

Background: There has been a recent appreciation that some metabolic enzymes can profoundly influence the nature of the immune response produced in macrophages. However, the role of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) in immune response remains unknown. This study aims to investigate the role of PCK2 in lipopolysaccharides (LPS)-induced activation in Kupffer cells.Methods: Inflammatory cytokines were determined by real-time quantitative reverse transcription-polymerase chain action (qRT-PCR) and flow cytometric analysis using a cytometric bead array. Western blotting and immunofluorescence staining were used to determine PCK2 expression and subcellular distribution under confocal laser microscopy. qRT-PCR, flow cytometry, and high-performance liquid chromatography (HPLC) were used to determine mitochondrial function. Pharmacological inhibition, knockdown, and overexpression of PCK2 were used to confirm its function. Co-immunoprecipitation (Co-IP) was performed to determine MAPK/NF-κB phosphorylation.Results: Inflammatory response was significantly increased in LPS-treated mice and Kupffer cells. During the inflammatory process, the protein level of PCK2 was significantly upregulated in Kupffer cells. Interestingly, the localization of PCK2 was mainly in cytosol rather than mitochondria after LPS stimulation. Gain-of-function and loss-of-function analyses found that PCK2 overexpression significantly upregulated the levels of inflammation markers, whereas PCK2 knockdown or inhibition significantly mitigated LPS-induced inflammatory response in Kupffer cells. Furthermore, PCK2 promoted protein phosphorylation of NF-κB and AKT/MAPK, the major signaling pathways, controlling inflammatory cascade activation.Conclusion: We identified a novel function of PCK2 in mediating LPS-induced inflammation and provided mechanistic insights into the regulation of inflammatory response in Kupffer cells. Therefore, PCK2 may serve as a novel therapeutic target for the regulation of Kupffer cells-mediated inflammatory responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hikari A. I. Yoshihara ◽  
Arnaud Comment ◽  
Juerg Schwitter

As both a consumer and producer of glucose, the kidney plays a significant role in glucose homeostasis. Measuring renal gluconeogenesis requires invasive techniques, and less invasive methods would allow renal gluconeogenesis to be measured more routinely. Magnetic resonance spectroscopy and imaging of infused substrates bearing hyperpolarized carbon-13 spin labels allows metabolism to be detected within the body with excellent sensitivity. Conversion of hyperpolarized 1-13C pyruvate in the fasted rat liver is associated with gluconeogenic flux through phosphoenolpyruvate carboxykinase (PEPCK) rather than pyruvate dehydrogenase (PDH), and this study tested whether this was also the case in the kidney. The left kidney was scanned in fed and overnight-fasted rats either with or without prior treatment by the PEPCK inhibitor 3-mercaptopicolinic acid (3-MPA) following infusion of hyperpolarized 1-13C pyruvate. The 13C-bicarbonate signal normalized to the total metabolite signal was 3.2-fold lower in fasted rats (p = 0.00073) and was not significantly affected by 3-MPA treatment in either nutritional state. By contrast, the normalized [1-13C]aspartate signal was on average 2.2-fold higher in the fasted state (p = 0.038), and following 3-MPA treatment it was 2.8-fold lower in fed rats and 15-fold lower in fasted rats (p = 0.001). These results confirm that, unlike in the liver, most of the pyruvate-to-bicarbonate conversion in the fasted kidney results from PDH flux. The higher conversion to aspartate in fasted kidney and the marked drop following PEPCK inhibition demonstrate the potential of this metabolite as a marker of renal gluconeogenesis.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4379
Author(s):  
Hui Zhou ◽  
Yuanyuan Wu ◽  
Eunhye Kim ◽  
Haibo Pan ◽  
Puming He ◽  
...  

Theaflavin-3,3′-digallate (TF3) is the most important theaflavin monomer in black tea. TF3 was proved to reduce blood glucose level in mice and rats. However, the elaborate anti-diabetic mechanism was not well elucidated. In this work, human hepatoma G2 (HepG2) cells and zebrafish (Danio rerio) were used simultaneously to reveal anti-diabetic effect of TF3. The results showed that TF3 could effectively rise glucose absorption capacity in insulin-resistant HepG2 cells and regulate glucose level in diabetic zebrafish. The hypoglycemic effect was mediated through down-regulating phosphoenolpyruvate carboxykinase and up-regulating glucokinase. More importantly, TF3 could significantly improve β cells regeneration in diabetic zebrafish at low concentrations (5 μg/mL and 10 μg/mL), which meant TF3 had a strong anti-diabetic effect. Obviously, this work provided the potential benefit of TF3 on hypoglycemic effect, regulating glucose metabolism enzymes, and protecting β cells. TF3 might be a promising agent for combating diabetes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ke Ji ◽  
Hualiang Liang ◽  
Mingchun Ren ◽  
Xianping Ge ◽  
Liangkun Pan ◽  
...  

AbstractA 75-day rearing trial was designed to study the response of juvenile Megalobrama amblycephala to dietary methionine (Met) levels. Three practical diets with graded Met levels (0.40%, 0.84% and 1.28% dry matter) were prepared to feed the juvenile fish. The results showed that the 0.84% Met diet significantly improved the growth compared with 0.40% diets. Compared with 0.84% and 1.28% Met, 0.40% Met significantly increased the hepatic lipid content, while decreasing the muscular lipid and glycogen contents. 0.40% Met decreased the protein levels of phospho-Eukaryotic initiation factor 4E binding protein-1 (p-4e-bp1), 4e-bp1 and Ribosomal protein S6 kinase 1 in the liver, compared with 0.84% diet, while an increasing trend was observed in the muscle. Met supplementation tended to decrease and increase lipid synthesis in the liver and muscle, respectively, via changing mRNA levels of sterol regulatory element-binding protein 1, fatty acid synthetase and acetyl-CoA carboxylase. 1.28% dietary Met promoted fatty acid β-oxidation and lipolysis in both the liver and muscle by increasing carnitine palmitoyl transferase 1, peroxisome proliferator activated receptor alpha, lipoprotein lipase and lipase mRNA levels. Compared with 0.40% and 0.84% dietary Met, 1.28% Met enhanced the mRNA levels of hepatic gluconeogenesis related genes phosphoenolpyruvate carboxykinase (pepck), and glucose-6-phosphatase, and muscular glycolysis related genes phosphofructokinase (pfk), and pyruvate kinase (pk). The mRNA levels of hepatic pfk, pk and glucokinase were markedly downregulated by 1.28% Met compared with 0.84% level. Muscular pepck, glycogen synthase, and hepatic glucose transporters 2 mRNA levels were induced by 1.28% Met. Generally, deficient Met level decreased the growth of juvenile Megalobrama amblycephala, and the different nutrient metabolism responses to dietary Met were revealed in the liver and muscle.


Author(s):  
Fehintoluwa Joy Femi-Olabisi ◽  
Ahmed Adebayo Ishola ◽  
Opeyemi Faokunla ◽  
Anthonia Oluyemi Agboola ◽  
Benjamin Ayodipupo Babalola

Abstract Background Polycystic ovary syndrome (PCOS) is a chronic endocrine disorder prevalent in premenopausal women and is characterized by a range of physiological and biochemical abnormalities which may include reproductive, endocrine, and metabolic alterations such as insulin resistance. Insulin resistance is the hallmark of PCOS as it predisposes the affected subjects to a higher risk of impaired glucose tolerance and type 2 diabetes mellitus (T2DM). In this study, the inhibitory activities of phytosterols and saccharides from aqueous extract of Costus spicatus rhizome were investigated against phosphoenolpyruvate carboxykinase (PEPCK), α-amylase, β-glucosidase, and fructose 1,6-biphosphatase (FBPase) in silico as potential novel therapeutic targets for T2DM-associated-PCOS. Phytochemical constituents of the plant were determined using gas chromatography-mass spectrophotometry (GC-MS), while molecular docking of the compounds with PEPCK, α-amylase, β-glucosidase, and FBPase was conducted using Vina. Thereafter, the binding modes were determined using Discovery Studio Visualizer, 2020. Results GCMS analysis of an aqueous extract of Costus spicatus rhizome revealed the presence of three compounds with a higher binding affinity for all enzymes studied compared to metformin. The compounds also interacted with key amino acid residues crucial to the enzyme’s activities. This study identified Lyxo-d-manno-nononic-1,4-lactone as potential multi-target inhibitors of PEPCK, α-amylase, β-glucosidase, and FBPase with reasonable pharmacokinetic properties and no significant toxicity. Conclusion These compounds can be explored as potential therapeutic agents for the management of insulin resistance in PCOS, subject to further experimental validation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Arezoo Afshari ◽  
Fouzieh Salimi ◽  
Azin Nowrouzi ◽  
Masoumeh Babaie Khalili ◽  
Salar Bakhtiyari ◽  
...  

Abstract Background The medicinal plant Citrullus colocynthis (L.) Schrad. (C. colocynthis) may benefit patients at different phases of diabetes by attuning to contrasting situations. Our primary objective was to find the mechanism(s) behind the antidiabetic/anti-hyperlipidemic effects of C.colocynthis seed aqueous extract (CCAE) in two different stages of type 2 diabetes (T2D) in rats. Methods Fasting blood sugar (FBS) levels, body weights, and the degree of impaired glucose tolerance (IGT) were measured in healthy nondiabetic control rats (Con), as well as rats with early and late stages of T2D, denoted as ET2D and LT2D, respectively. CCAE was intraperitoneally (IP) injected for 28 days. In the end, the hepatic mRNA expression levels of the following genes were determined by RT-PCR: glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), insulin-dependent sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), peroxisome proliferator-activated receptor alpha (PPARα), and carnitine palmitoyltransferase I (CPT1). The liver was examined by hematoxylin and eosin (H&E) and Oil-Red O staining. CCAE was partially analyzed by HPLC-DAD. Results ET2D and LT2D were characterized by differentially elevated FBS, deteriorated bodyweight, and significant IGT compared to Con. Hepatosteatoses of varying morphologies and higher hepatic expression of G6Pase than PRPCK in ET2D versus the opposite in LT2D further confirmed the divergent nature of metabolic aberrations. At the end of 28 days, the high levels of FBS, alkaline phosphatase (ALP), triglyceride (TG), urea, hepatic protein carbonyl content (PCC), and alanine and aspartate aminotransferases (AST and ALT, respectively) persisted in untreated LT2D. CCAE ameliorated oxidative stress and upregulated PPARα expression in diabetic groups and Con; it downregulated CPT1 expression in the LT2D group. CCAE’s ability to lower FBS and serum and hepatic TG in both ET2D and LT2D indicated its ability to act via different mechanisms. Ferulic acid (Fer A) and rutin hydrate (RH) were detected in CCAE. Conclusion CCAE lowered the FBS in ET2D via inhibiting the hepatic G6Pase expression (glycogenolysis). In LT2D, CCAE abated sugar levels by diverting PEPCK activity, preferably towards glyceroneogenesis than gluconeogenesis. The preserved triglyceride/fatty acid (TG/FA) cycle, the upregulated PPARα, and the downregulated CPT1 gene expressions reduced serum and hepatic TG.


Sign in / Sign up

Export Citation Format

Share Document