lateral parabrachial nucleus
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 30)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Maya Xia ◽  
Benjamin Owen ◽  
Jeremy Chiang ◽  
Alyssa Levitt ◽  
Wen Wei Yan ◽  
...  

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic and hypoxic ventilatory response. This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of seizure-induced respiratory arrest, potentially through its outputs to brainstem respiratory regions.


2021 ◽  
Author(s):  
Shaowen Qian ◽  
Sumei Yan ◽  
Ruiqi Pang ◽  
Jing Zhang ◽  
Kai Liu ◽  
...  

Abstract Both rodents and primates have evolved to orchestrate food intake to maintain thermal homeostasis in coping with ambient temperature challenges. However, the mechanisms underlying temperature-coordinated feeding behavior are rarely reported. Here we found that a non-canonical feeding center, the anteroventral and periventricular portions of medial preoptic area (apMPOA) responded to altered dietary states. Two neighboring but distinct apMPOA neurons mediated feeding in receiving anatomical inputs from external and dorsal subnuclei of lateral parabrachial nucleus (LPB). While both populations are glutamatergic, the arcuate nucleus (ARC)-projecting neurons in apMPOA can sense low temperature and promote food intake. The other type, the paraventricular hypothalamic nucleus (PVH)-projecting neurons in apMPOA are primarily sensitive to high temperature and suppress food intake. Cutting off both pathways can eliminate the temperature-dependence of feeding. Further projection-specific RNA sequencing identified that the two neuronal populations were molecularly marked by galanin receptor and apelin receptor. These findings reveal an unrecognized cell populations and circuits of apMPOA that orchestrates feeding behavior against thermal challenges.


2021 ◽  
Author(s):  
Yongjing Cheng ◽  
Jianhui Xu ◽  
Ruixin Zeng ◽  
Xi Zhao ◽  
Wenmin Gao ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mariko Ito ◽  
Masashi Nagase ◽  
Suguru Tohyama ◽  
Kaori Mikami ◽  
Fusao Kato ◽  
...  

AbstractThe neuronal circuitry for pain signals has been intensively studied for decades. The external lateral parabrachial nucleus (PB) was shown to play a crucial role in nociceptive information processing. Previous work, including ours, has demonstrated that stimulating the neuronal pathway from the PB to the central region of the amygdala (CeA) can substitute for an actual pain signal to drive an associative form of threat/fear memory formation. However, it is still unknown whether activation of the PB–CeA pathway can directly drive avoidance behavior, escape behavior, or only acts as strategic freezing behavior for later memory retrieval. To directly address this issue, we have developed a real-time Y-maze conditioning behavioral paradigm to examine avoidance behavior induced by optogenetic stimulation of the PB–CeA pathway. In this current study, we have demonstrated that the PB–CeA pathway carries aversive information that can directly trigger avoidance behavior and thereby serve as an alarm signal to induce adaptive behaviors for later decision-making.


2021 ◽  
Vol 118 (23) ◽  
pp. e2022134118
Author(s):  
Shijia Liu ◽  
Dong-Il Kim ◽  
Tae Gyu Oh ◽  
Gerald M. Pao ◽  
Jong-Hyun Kim ◽  
...  

Opioid-induced respiratory depression (OIRD) causes death following an opioid overdose, yet the neurobiological mechanisms of this process are not well understood. Here, we show that neurons within the lateral parabrachial nucleus that express the µ-opioid receptor (PBLOprm1 neurons) are involved in OIRD pathogenesis. PBLOprm1 neuronal activity is tightly correlated with respiratory rate, and this correlation is abolished following morphine injection. Chemogenetic inactivation of PBLOprm1 neurons mimics OIRD in mice, whereas their chemogenetic activation following morphine injection rescues respiratory rhythms to baseline levels. We identified several excitatory G protein–coupled receptors expressed by PBLOprm1 neurons and show that agonists for these receptors restore breathing rates in mice experiencing OIRD. Thus, PBLOprm1 neurons are critical for OIRD pathogenesis, providing a promising therapeutic target for treating OIRD in patients.


2021 ◽  
Author(s):  
Teng He ◽  
Wenwen Chen ◽  
Yu Fan ◽  
Xing Xu ◽  
Zilin Wang ◽  
...  

The lateral parabrachial nucleus (LPB) is critical hub implicated in the control of food intake, reward and aversion. Here, we identified a novel cholinergic projection from choline acetyltransferase (ChAT)-positive neurons in external portion of the lateral parabrachial nucleus (eLPBChAT) to γ-aminobutyric acid (GABA) neurons in central nucleus of amygdala (CeAGABA), activation of which could block methamphetamine (METH)-primed conditioned place preference (CPP) in mice.


2021 ◽  
Vol 7 (22) ◽  
pp. eabf8719
Author(s):  
Yong Han ◽  
Guobin Xia ◽  
Yanlin He ◽  
Yang He ◽  
Monica Farias ◽  
...  

The neural circuitry mechanism that underlies dopaminergic (DA) control of innate feeding behavior is largely uncharacterized. Here, we identified a subpopulation of DA neurons situated in the caudal ventral tegmental area (cVTA) directly innervating DRD1-expressing neurons within the lateral parabrachial nucleus (LPBN). This neural circuit potently suppresses food intake via enhanced satiation response. Notably, this cohort of DAcVTA neurons is activated immediately before the cessation of each feeding bout. Acute inhibition of these DA neurons before bout termination substantially suppresses satiety and prolongs the consummatory feeding. Activation of postsynaptic DRD1LPBN neurons inhibits feeding, whereas genetic deletion of Drd1 within the LPBN causes robust increase in food intake and subsequent weight gain. Furthermore, the DRD1LPBN signaling manifests the central mechanism in methylphenidate-induced hypophagia. In conclusion, our study illuminates a hindbrain DAergic circuit that controls feeding through dynamic regulation in satiety response and meal structure.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Arnab Barik ◽  
Anupama Sathyamurthy ◽  
James H Thompson ◽  
Mathew Seltzer ◽  
Ariel J Levine ◽  
...  

Painful stimuli evoke a mixture of sensations, negative emotions and behaviors. These myriad effects are thought to be produced by parallel ascending circuits working in combination. Here we describe a pathway from spinal cord to brain for ongoing pain. Activation of a subset of spinal neurons expressing Tacr1 evokes a full repertoire of somatotopically-directed pain-related behaviors in the absence of noxious input. Tacr1 projection neurons (expressing NKR1) target a tiny cluster of neurons in the superior lateral parabrachial nucleus (PBN-SL). We showed that these neurons, which also express Tacr1 (PBN-SLTacr1), are responsive to sustained but not acute noxious stimuli. Activation of PBN-SLTacr1 neurons alone did not trigger pain responses but instead served to dramatically heighten nocifensive behaviors and suppress itch. Remarkably, mice with silenced PBN-SLTacr1 neurons ignored long-lasting noxious stimuli. Together, these data reveal new details about this spinoparabrachial pathway and its key role in the sensation of ongoing pain.


2021 ◽  
Vol 15 ◽  
Author(s):  
Marie V. Le May ◽  
Fiona Peris-Sampedro ◽  
Iris Stoltenborg ◽  
Erik Schéle ◽  
Tina Bake ◽  
...  

The lateral parabrachial nucleus (lPBN), located in the pons, is a well-recognized anorexigenic center harboring, amongst others, the calcitonin gene-related peptide (CGRP)-expressing neurons that play a key role. The receptor for the orexigenic hormone ghrelin (the growth hormone secretagogue receptor, GHSR) is also abundantly expressed in the lPBN and ghrelin delivery to this site has recently been shown to increase food intake and alter food choice. Here we sought to explore whether GHSR-expressing cells in the lPBN (GHSRlPBN cells) contribute to feeding control, food choice and body weight gain in mice offered an obesogenic diet, involving studies in which GHSRlPBN cells were silenced. We also explored the neurochemical identity of GHSRlPBN cells. To silence GHSRlPBN cells, Ghsr-IRES-Cre male mice were bilaterally injected intra-lPBN with a Cre-dependent viral vector expressing tetanus toxin-light chain. Unlike control wild-type littermates that significantly increased in body weight on the obesogenic diet (i.e., high-fat high-sugar free choice diet comprising chow, lard and 9% sucrose solution), the heterozygous mice with silenced GHSRlPBN cells were resistant to diet-induced weight gain with significantly lower food intake and fat weight. The lean phenotype appeared to result from a decreased food intake compared to controls and caloric efficiency was unaltered. Additionally, silencing the GHSRlPBN cells altered food choice, significantly reducing palatable food consumption. RNAscope and immunohistochemical studies of the lPBN revealed considerable co-expression of GHSR with glutamate and pituitary adenylate cyclase-activating peptide (PACAP), and much less with neurotensin, substance P and CGRP. Thus, the GHSRlPBN cells are important for diet-induced weight gain and adiposity, as well as in the regulation of food intake and food choice. Most GHSRlPBN cells were found to be glutamatergic and the majority (76%) do not belong to the well-characterized anorexigenic CGRP cell population.


Sign in / Sign up

Export Citation Format

Share Document