leukemia inhibitory factor
Recently Published Documents


TOTAL DOCUMENTS

1375
(FIVE YEARS 130)

H-INDEX

84
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Zhiqun Bai ◽  
Xuemei Wang ◽  
Zhen Zhang

Emerging evidence has indicated that aberrantly expressed long noncoding RNAs (lncRNAs) play a vital role in various biological processes associated with tumorigenesis. Leukemia inhibitory factor receptor antisense RNA1 (LIFR-AS1) is a recently identified lncRNA transcribed in an antisense manner from the LIFR gene located on human chromosome 5p13.1. LIFR-AS1 regulates tumor proliferation, migration, invasion, apoptosis, and drug resistance through different mechanisms. Its expression level is related to the clinicopathological characteristics of tumors and plays a key role in tumor occurrence and development. In this review, we summarize the role of LIFR-AS1 in the development and progression of different cancers and highlight the potential for LIFR-AS1 to serve as a biomarker and therapeutic target for a variety of human cancers.


2021 ◽  
Vol 23 (1) ◽  
pp. 353
Author(s):  
Holger Lörchner ◽  
Juan M. Adrian-Segarra ◽  
Christian Waechter ◽  
Roxanne Wagner ◽  
Maria Elisa Góes ◽  
...  

Oncostatin M (OSM) and leukemia inhibitory factor (LIF) signaling protects the heart after myocardial infarction (MI). In mice, oncostatin M receptor (OSMR) and leukemia inhibitory factor receptor (LIFR) are selectively activated by the respective cognate ligands while OSM activates both the OSMR and LIFR in humans, which prevents efficient translation of mouse data into potential clinical applications. We used an engineered human-like OSM (hlOSM) protein, capable to signal via both OSMR and LIFR, to evaluate beneficial effects on cardiomyocytes and hearts after MI in comparison to selective stimulation of either LIFR or OSMR. Cell viability assays, transcriptome and immunoblot analysis revealed increased survival of hypoxic cardiomyocytes by mLIF, mOSM and hlOSM stimulation, associated with increased activation of STAT3. Kinetic expression profiling of infarcted hearts further specified a transient increase of OSM and LIF during the early inflammatory phase of cardiac remodeling. A post-infarction delivery of hlOSM but not mOSM or mLIF within this time period combined with cardiac magnetic resonance imaging-based strain analysis uncovered a global cardioprotective effect on infarcted hearts. Our data conclusively suggest that a simultaneous and rapid activation of OSMR and LIFR after MI offers a therapeutic opportunity to preserve functional and structural integrity of the infarcted heart.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Previous work determined that bovine interleukin-6 (IL6) increases inner cell mass (ICM), primitive endoderm (PE), and total cell number in in vitro produced (IVP) bovine blastocysts. Another IL6 family member, leukemia inhibitory factor (LIF), has the potential to produce the same effects of IL6 due to the presence of its receptor in bovine blastocysts. We compared the abilities of LIF and IL6 to increase ICM cell numbers in day 7, 8, and 9 IVP bovine blastocysts. Supplementation with 100 ng/ml LIF from day 5 onward improved blastocyst formation rates on days 7 and 8 similar to what was observed when supplementing 100 ng/ml IL6. However, LIF supplementation did not cause an increase in ICM numbers like was observed after supplementing IL6. On day 9, increases in PE cell numbers were detected after LIF supplementation, but 300 ng/ml LIF was required to achieve the same effect on PE numbers that was observed by providing 100 ng/ml IL6. Collectively, these results show that LIF can mimic at least some of the effects of IL6 in bovine blastocyst.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zahraa Alzaidi ◽  
Şule Menziletoğlu Yildiz ◽  
Çetin Saatçi ◽  
Hilal Ünlü Akalin ◽  
Iptisam Ipek Muderris ◽  
...  

Abstract Background Successful implantation of blastocysts is indeed an important path in mammalian reproduction that is governed by a complicated web of cytokines interactions. Leukemia inhibitory factor (LIF) and interleukin-11 (IL-11) part of the interleukin (IL)-6 groups are cytokines that are needed for effective implantation and prevent infertility symptoms. This study aimed to determine the expression level (LIF, IL-11) genes in patients with primary infertility related to polycystic ovary syndrome (PCOS), tubal factor infertility (TFI), and unexplained infertility (UI). Results In this study, 75 infertility women and 40 controls were involved. The expressions of LIF and IL-11 genes were evaluated by quantitative real-time polymerase chain reaction qRT–PCR Light Cycler in patients and healthy controls. PCOS, TFI, and UI groups showed promising results regarding LIF gene, which appeared at very small levels compared to the control (p < 0.0001). Regarding IL-11, the two groups TFI and UI were significantly linked to the lower level of gene expression, while the PCOS group has no significant difference when it is compared to the control group (p < 0.0001, < 0.05, 0.19), respectively. Conclusion The current findings show that low levels of LIF and IL-11 gene expression are linked to various primary infertility conditions, including PCOS, tubal factor, and unexplained infertility since they play a fundamental role in embryo implantation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kairu Xie ◽  
Hairong Xiong ◽  
Wen Xiao ◽  
Zhiyong Xiong ◽  
Wenjun Hu ◽  
...  

Abstract Background Cancer cachexia is a wasting disorder characterized by significant weight loss, and is attributed to skeletal muscle weakness. In the process of cancer development, microRNAs act as oncogenes or tumor suppressors. Moreover, they are implicated in muscle development and wasting. This study sought to explore the mechanisms and correlation between miR-29c and muscle wasting in lung cancer cachexia. Methods Data for expression analysis were retrieved from the Cancer Genome Atlas (TCGA) database. qRT-PCR analyses were performed to explore the expression levels of miR-29c and Leukemia Inhibitory Factor (LIF). Lewis lung carcinoma (LLC) cell line was used to establish a cachexia model to explore the functions of miR-29c and LIF in lung cancer cachexia. Furthermore, in vitro (in C2C12 myotubes) and in vivo (in LLC tumor-bearing mice) experiments were performed to explore the mechanisms of miR-29c and LIF in lung cachexia. Results Analysis of the lung cancer cachexia model showed that miR-29c was down-regulated, and its expression was negatively correlated with muscle catabolic activity. Overexpression of miR-29c mitigated the cachectic phenotype. Mechanistic studies showed that LIF was a direct target gene of miR-29c, and LIF was upregulated in vitro and in vivo. Analysis showed that LIF promoted muscle wasting through the JAK/STAT and MAP-kinase pathways. Conclusions The findings indicated that miR-29c was negatively correlated with the cachectic phenotype, and the miR-29c-LIF axis is a potential therapeutic target for cancer cachexia.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1298
Author(s):  
Nazanin Vaziri ◽  
Laleh Shariati ◽  
Ali Zarrabi ◽  
Ali Farazmand ◽  
Shaghayegh Haghjooy Javanmard

Leukemia inhibitory factor (LIF), as a member of the interleukin-6 cytokine family, plays a complex role in solid tumors. However, the effect of LIF as a tumor microenvironment factor on plasticity control in breast cancer remains largely unknown. In this study, an in vitro investigation is conducted to determine the crosstalk between breast cancer cells and fibroblasts. Based on the results, cancer-associated fibroblasts are producers of LIF in the cocultivation system with breast cancer cells. Treatment with the CAF-CM and human LIF protein significantly promoted stemness through the dedifferentiation process and regaining of stem-cell-like properties. In addition, the results indicate that activation of LIFR signaling in breast cancer cells in the existence of CAF-secreted LIF can induce Nanog and Oct4 expression and increase breast cancer stem cell markers CD24−/CD44+. In contrast, suppression of the LIF receptor by human LIF receptor inhibition antibody decreased the cancer stem cell markers. We found that LIF was frequently overexpressed by CAFs and that LIF expression is necessary for dedifferentiation of breast cancer cell phenotype and regaining of cancer stem cell properties. Our results suggest that targeting LIF/LIFR signaling might be a potent therapeutic strategy for breast cancer and the prevention of tumor recurrence.


Sign in / Sign up

Export Citation Format

Share Document