cell elongation
Recently Published Documents


TOTAL DOCUMENTS

775
(FIVE YEARS 87)

H-INDEX

75
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Javier Martínez Pacheco ◽  
Limei Song ◽  
Victoria Berdion Gabarain ◽  
Juan Manuel Peralta ◽  
Tomás Urzúa Lehuedé ◽  
...  

Root hairs (RH) are excellent model systems for studying cell size regulation since they elongate several hundred-fold their original size. Their growth is determined both by intrinsic and environmental signals. Although nutrients availability in the soil are key factors for a sustained plant growth, the molecular mechanisms underlying their perception and downstream signaling pathways remains unclear. Here, we identified that a low temperature triggers a strong RH cell elongation response involving the cell surface receptor kinase FERONIA (FER) and nutrient sensor TORC1 pathway. We found that FER is required to perceive limited nutrients availability caused by low temperature, to interacts with and activate TORC1-downstream components to trigger RH growth. Nitrates perceived and transported by NRT1.1 were found to mimic this growth response at low temperature. Our findings reveal a new molecular mechanism by which a central hub composed by FER-TORC1 controls RH cell elongation under low temperature.


2022 ◽  
Author(s):  
Josué Flores-Kim ◽  
Genevieve S Dobihal ◽  
Thomas G Bernhardt ◽  
David Z Rudner

Penicillin and related antibiotics disrupt cell wall synthesis in bacteria and induce lysis by misactivating cell wall hydrolases called autolysins. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen Streptococcus pneumoniae (Sp), LytA is the major autolysin responsible for penicillin-induced bacteriolysis. We recently discovered that penicillin treatment of Sp causes a dramatic shift in surface polymer biogenesis in which cell wall-anchored teichoic acids (WTAs) increase in abundance at the expense of lipid-linked lipoteichoic acids. Because LytA binds to these polymers, this change recruits the enzyme to its substrate where it cleaves the cell wall and elicits lysis. In this report, we identify WhyD (SPD_0880) as a new factor that controls the level of WTAs in Sp cells to prevent LytA misactivation and lysis. We show that WhyD is a WTA hydrolase that restricts the WTA content of the wall to areas adjacent to active PG synthesis. Our results support a model in which the WTA tailoring activity of WhyD directs PG remodeling activity required for proper cell elongation in addition to preventing autolysis by LytA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Judith García-González ◽  
Kasper van Gelderen

Primary root growth is required by the plant to anchor in the soil and reach out for nutrients and water, while dealing with obstacles. Efficient root elongation and bending depends upon the coordinated action of environmental sensing, signal transduction, and growth responses. The actin cytoskeleton is a highly plastic network that constitutes a point of integration for environmental stimuli and hormonal pathways. In this review, we present a detailed compilation highlighting the importance of the actin cytoskeleton during primary root growth and we describe how actin-binding proteins, plant hormones, and actin-disrupting drugs affect root growth and root actin. We also discuss the feedback loop between actin and root responses to light and gravity. Actin affects cell division and elongation through the control of its own organization. We remark upon the importance of longitudinally oriented actin bundles as a hallmark of cell elongation as well as the role of the actin cytoskeleton in protein trafficking and vacuolar reshaping during this process. The actin network is shaped by a plethora of actin-binding proteins; however, there is still a large gap in connecting the molecular function of these proteins with their developmental effects. Here, we summarize their function and known effects on primary root growth with a focus on their high level of specialization. Light and gravity are key factors that help us understand root growth directionality. The response of the root to gravity relies on hormonal, particularly auxin, homeostasis, and the actin cytoskeleton. Actin is necessary for the perception of the gravity stimulus via the repositioning of sedimenting statoliths, but it is also involved in mediating the growth response via the trafficking of auxin transporters and cell elongation. Furthermore, auxin and auxin analogs can affect the composition of the actin network, indicating a potential feedback loop. Light, in its turn, affects actin organization and hence, root growth, although its precise role remains largely unknown. Recently, fundamental studies with the latest techniques have given us more in-depth knowledge of the role and organization of actin in the coordination of root growth; however, there remains a lot to discover, especially in how actin organization helps cell shaping, and therefore root growth.


2021 ◽  
Vol 7 ◽  
pp. 100049
Author(s):  
Wenbo Li ◽  
Qian Zhang ◽  
Shumin Cao ◽  
Laifu Luo ◽  
Lingting Li ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Baojun Chen ◽  
Yaru Sun ◽  
Zailong Tian ◽  
Guoyong Fu ◽  
Xinxin Pei ◽  
...  

Abstract Background Cotton is an important cash crop. The fiber length has always been a hot spot, but multi-factor control of fiber quality makes it complex to understand its genetic basis. Previous reports suggested that OsGASR9 promotes germination, width, and thickness by GAs in rice, while the overexpression of AtGASA10 leads to reduced silique length, which is likely to reduce cell wall expansion. Therefore, this study aimed to explore the function of GhGASA10 in cotton fibers development. Results To explore the molecular mechanisms underlying fiber elongation regulation concerning GhGASA10–1, we revealed an evolutionary basis, gene structure, and expression. Our results emphasized the conservative nature of GASA family with its origin in lower fern plants S. moellendorffii. GhGASA10–1 was localized in the cell membrane, which may synthesize and transport secreted proteins to the cell wall. Besides, GhGASA10–1 promoted seedling germination and root extension in transgenic Arabidopsis, indicating that GhGASA10–1 promotes cell elongation. Interestingly, GhGASA10–1 was upregulated by IAA at fiber elongation stages. Conclusion We propose that GhGASA10–1 may promote fiber elongation by regulating the synthesis of cellulose induced by IAA, to lay the foundation for future research on the regulation networks of GASA10–1 in cotton fiber development.


2021 ◽  
Author(s):  
Hortense Moreau ◽  
Sabine D Zimmermann ◽  
Isabelle Gaillard ◽  
Nadine Paris
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1962
Author(s):  
Kewalee Jantapo ◽  
Watcharapong Wimonchaijit ◽  
Wenfei Wang ◽  
Juthamas Chaiwanon

Root growth depends on cell proliferation and cell elongation at the root meristem, which are controlled by plant hormones and nutrient availability. As a foraging strategy, rice (Oryza sativa L.) grows longer roots when nitrogen (N) is scarce. However, how the plant steroid hormone brassinosteroid (BR) regulates rice root meristem development and responses to N deficiency remains unclear. Here, we show that BR has a negative effect on meristem size and a dose-dependent effect on cell elongation in roots of rice seedlings treated with exogenous BR (24-epicastasterone, ECS) and the BR biosynthesis inhibitor propiconazole (PPZ). A genome-wide transcriptome analysis identified 4110 and 3076 differentially expressed genes in response to ECS and PPZ treatments, respectively. The gene ontology (GO) analysis shows that terms related to cell proliferation and cell elongation were enriched among the ECS-repressed genes. Furthermore, microscopic analysis of ECS- and PPZ-treated roots grown under N-sufficient and N-deficient conditions demonstrates that exogenous BR or PPZ application could not enhance N deficiency-mediated root elongation promotion as the treatments could not promote root meristem size and cell elongation simultaneously. Our study demonstrates that optimal levels of BR in the rice root meristem are crucial for optimal root growth and the foraging response to N deficiency.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Hans G. Edelmann

AbstractOne of the longest standing theories and, therein-based, regulation-model of plant root development, posits the inhibitory action of auxin (IAA, indolylacetic acid) on elongation growth of root cells. This effect, as induced by exogenously supplied IAA, served as the foundation stone for root growth regulation. For decades, auxin ruled the day and only allowed hormonal side players to be somehow involved, or in some way affected. However, this copiously reiterated, apparent cardinal role of auxin only applies in roots immersed in solutions; it vanishes as soon as IAA-supplied roots are not surrounded by liquid. When roots grow in humid air, exogenous IAA has no inhibitory effect on elongation growth of maize roots, regardless of whether it is applied basipetally from the top of the root or to the entire residual seedling immersed in IAA solution. Nevertheless, such treatment leads to pronounced root-borne ethylene emission and lateral rooting, illustrating and confirming thereby induced auxin presence and its effect on the root — yet, not on root cell elongation. Based on these findings, a new root growth regulatory model is proposed. In this model, it is not IAA, but IAA-triggered ethylene which plays the cardinal regulatory role — taking effect, or not — depending on the external circumstances. In this model, in water- or solution-incubated roots, IAA-dependent ethylene acts due to its accumulation within the root proper by inhibited/restrained diffusion into the liquid phase. In roots exposed to moist air or gas, there is no effect on cell elongation, since IAA-triggered ethylene diffuses out of the root without an impact on growth.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1352
Author(s):  
Qian Chen ◽  
Fan Xu ◽  
Li Wang ◽  
Xiaodong Suo ◽  
Qiaoling Wang ◽  
...  

Cotton fiber is a single-celled seed trichrome that arises from the epidermis of the ovule’s outer integument. The fiber cell displays high polar expansion and thickens but not is disrupted by cell division. Therefore, it is an ideal model for studying the growth and development of plant cells. Sphingolipids are important components of membranes and are also active molecules in cells. However, the sphingolipid profile during fiber growth and the differences in sphingolipid metabolism at different developmental stages are still unclear. In this study, we detected that there were 6 classes and 95 molecular species of sphingolipids in cotton fibers by ultrahigh performance liquid chromatography-MS/MS (UHPLC-MS/MS). Among these, the phytoceramides (PhytoCer) contained the most molecular species, and the PhytoCer content was highest, while that of sphingosine-1-phosphate (S1P) was the lowest. The content of PhytoCer, phytoceramides with hydroxylated fatty acyls (PhytoCer-OHFA), phyto-glucosylceramides (Phyto-GluCer), and glycosyl-inositol-phospho-ceramides (GIPC) was higher than that of other classes in fiber cells. With the development of fiber cells, phytosphingosine-1-phosphate (t-S1P) and PhytoCer changed greatly. The sphingolipid molecular species Ceramide (Cer) d18:1/26:1, PhytoCer t18:1/26:0, PhytoCer t18:0/26:0, PhytoCer t18:1/h20:0, PhytoCer t18:1/h26:0, PhytoCer t18:0/h26:0, and GIPC t18:0/h16:0 were significantly enriched in 10-DPA fiber cells while Cer d18:1/20:0, Cer d18:1/22:0, and GIPC t18:0/h18:0 were significantly enriched in 20-DPA fiber cells, indicating that unsaturated PhytoCer containing hydroxylated and saturated very long chain fatty acids (VLCFA) play some role in fiber cell elongation. Consistent with the content analysis results, the related genes involved in long chain base (LCB) hydroxylation and unsaturation as well as VLCFA synthesis and hydroxylation were highly expressed in rapidly elongating fiber cells. Furthermore, the exogenous application of a potent inhibitor of serine palmitoyltransferase, myriocin, severely blocked fiber cell elongation, and the exogenous application of sphingosine antagonized the inhibition of myriocin for fiber elongation. Taking these points together, we concluded that sphingolipids play crucial roles in fiber cell elongation and SCW deposition. This provides a new perspective for further studies on the regulatory mechanism of the growth and development of cotton fiber cells.


2021 ◽  
Author(s):  
Stephanie J Conway ◽  
Cristina L Walcher-Chevillet ◽  
Kate Salome Barbour ◽  
Elena M Kramer

Abstract Background and Aims Aquilegia produce elongated, three-dimensional petal spurs that fill with nectar to attract pollinators. Previous studies have shown that the diversity of spur length across the Aquilegia genus is a key innovation that is tightly linked with its recent and rapid diversification into new ranges, and that evolution of increased spur lengths are achieved via anisotropic cell elongation. Previous work identified a brassinosteroid response transcription factor as being enriched in the early developing spur cup. Brassinosteroids (BRs) are known to be important for cell elongation, suggesting that brassinosteroid-mediated response may be an important regulator of spur elongation and potentially a driver of spur length diversity in Aquilegia. In this study, we investigated the role of brassinosteroids in the development of the Aquilegia coerulea petal spur. Methods We exogenously applied the biologically active BR brassinolide to developing petals spurs to investigate spur growth under high hormone conditions. We used virus induced gene silencing and gene expression experiments to understand the function of brassinosteroid-related transcription factors in Aquilegia coerulea petal spurs. Key Results We identified a total of three Aquilegia homologs of the BES1/BZR1 protein family and found that these genes are ubiquitously expressed in all floral tissues during development, yet consistent with the previous RNAseq study, we found that two of these paralogs are enriched in early developing petals. Exogenously applied brassinosteroid increased petal spur length due to increased anisotropic cell elongation as well as cell division. We found that targeting of the AqBEH genes with VIGS resulted in shortened petals, a phenotype caused in part by a loss of cell anisotropy. Conclusions Collectively, our results support a role for brassinosteroids in anisotropic cell expansion in Aquilegia petal spurs and highlight the BR pathway as a potential player in the diversification of petal spur length in Aquilegia.


Sign in / Sign up

Export Citation Format

Share Document