scholarly journals Feeding Behavior in Free-Ranging, Large African Carnivores

1996 ◽  
Vol 77 (1) ◽  
pp. 240-254 ◽  
Author(s):  
B. Van Valkenburgh
Ecology ◽  
1994 ◽  
Vol 75 (2) ◽  
pp. 489-497 ◽  
Author(s):  
Klemens Putz ◽  
Charles A. Bost

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masao Amano ◽  
Yudai Kawano ◽  
Taketo Kubo ◽  
Tsuyoshi Kuwahara ◽  
Hayao Kobayashi

AbstractLaterality has been reported in many vertebrates, and asymmetrical cerebral hemisphere function has been hypothesized to cause a left-bias in social behavior and a right-bias in feeding behavior. In this paper, we provide the first report of behavioral laterality in free-ranging finless porpoises, which seems to support the aforementioned hypothesis. We observed the turning behavior of finless porpoises in Omura Bay, Japan, using land-based and unmanned aerial system observations. We found a strong tendency in finless porpoises to turn counterclockwise with their right side down when pursuing and catching fish at the surface of the water. Our results suggest that this population of finless porpoises shows consistent right-biased laterality. Right-biased laterality has been observed in various foraging cetaceans and is usually explained by the dominance of the right eye-left cerebral hemisphere in prey recognition; however, right-biased laterality in foraging cetaceans may have multiple causes.


2021 ◽  
Author(s):  
Masao Amano ◽  
Yudai Kawano ◽  
Taketo Kubo ◽  
Tsuyoshi Kuwahara ◽  
Hayao Kobayashi

Abstract Laterality has been reported in many vertebrates, and asymmetrical cerebral hemisphere function has been hypothesized to cause a left-bias in social behavior and a right-bias in feeding behavior. In this paper, we provide the first report of behavioral laterality in free-ranging finless porpoises, which seemingly supports the aforementioned hypothesis. We observed the turning behavior of finless porpoises in Omura Bay, Japan, using land-based and unmanned aerial system observations. We found a strong tendency in finless porpoises to turn counterclockwise with their right side down when pursuing and catching fish at the surface of the water. Our results suggest that this population of finless porpoises shows consistent right-biased laterality. Right-biased laterality has been observed in various foraging cetaceans and is usually explained by the dominance of the right eye-left cerebral hemisphere in prey recognition; however, right-biased laterality in foraging cetaceans may have multiple causes.


1993 ◽  
Vol 33 (2) ◽  
pp. 117-125 ◽  
Author(s):  
KEITH L. BILDSTEIN ◽  
CATHERINE B. GOLDEN ◽  
BARBARA J. MCCRAITH ◽  
BRUCE W. BOHMKE

2020 ◽  
Vol 26 (1-2) ◽  
pp. 73-78
Author(s):  
A Hossen ◽  
MH Rahman ◽  
MZ Ali ◽  
MA Yousuf ◽  
MZ Hassan ◽  
...  

Duck plague (DP) is the most important infectious disease of geese, ducks and free-ranging water birds. The present study was conducted to determine the prevalence of duck plague virus followed by isolation and identification. For these purposes, a total of 155 cloacal swabs samples were collected randomly from duck of different haor areas of Bangladesh including 45 (41 surveillance and 4 clinical) samples from Netrokona; 42 (40 surveillance and 2 clinical) samples from Kishoregonj; 30 samples from Brahmanbaria and 38 samples from Sunamganj. The samples were processed and pooled (1:5 ratio) for initial screening of target polymerase gene of duck plague virus by polymerase chain reaction (PCR) method. All the samples of a positive pool were then tested individually for identifying the individual positive samples. The result showed that out of 155 samples, 41 (26.45%) were found positive in which 17 were from Netrokona, where 15 (36.58%) were from surveillance samples and 2 (50%) were from clinical sample; 16 were from Kishoregonj, where 14 (35%) were from surveillance samples and 2 (100%) were from clinical sample; 2 (6.6%) were from Brahmanbaria and 5 (13.15%) were from Sunamganj. These positive samples were inoculated into 9-10 days embryonated duck eggs (EDE) through chorioallantoic membrane (CAM) route for the isolation of virus. The EDE died earlier was also chilled, and in a similar way, the CAMs were collected and again performed PCR for id entification of virus. Out of 41 PCR positive samples, 26 samples were isolated and reconfirmed by PCR. Subsequently, DPV was isolated in primary duck embryo fibroblasts cell culture and confirmed by observing cytopathic effect (CPE). Bang. J. Livs. Res. Vol. 26 (1&2), 2019: P. 73-78


Sign in / Sign up

Export Citation Format

Share Document