chorioallantoic membrane
Recently Published Documents


TOTAL DOCUMENTS

1304
(FIVE YEARS 296)

H-INDEX

64
(FIVE YEARS 8)

2022 ◽  
Vol 11 (2) ◽  
pp. 383-392
Author(s):  
Qun Huang ◽  
Ran Yang ◽  
Qia Wang ◽  
Hui Teng ◽  
Hongbo Song ◽  
...  

Author(s):  
DYAH AYUWATI WALUYO ◽  
SUTRIYO

Objective: The purpose of this study is to determine the anti-aging properties and safety of serum containing gold nanoparticles (AuNP) using Sidaguri extract (Sida rhombifolia) through their anti-glycation effect. Methods: The anti-aging effect of serum was performed in vitro by measuring advance glycation end products (AGEs) formed during incubation using a Microplate reader, and safety of serum was performed using hen’s egg chorioallantoic membrane (HET-CAM) method using White Leghorn egg. Results: The study showed that serum formulation had an anti-glycation effect with inhibition percentages are 68.20±6.86% and 74.83%±19.91% for a serum containing 10% and 20% gold nanoparticles and little to no irritation potency for both serum formulations with RI value 0.0 and 0.0, respectively. Conclusion: Due to both their anti-glycation effect and irritation behavior, serum formulation containing gold nanoparticle synthesized using Sidaguri extracts could be utilized as anti-aging cosmetics in the future.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Wei Chen ◽  
Wenhui Huang ◽  
Yu Yang ◽  
Keshen Li

Cerebral endothelial cells play an essential role in brain angiogenesis, and their function has been found to be impaired in diabetes. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite of glucose formed mainly during glycolysis, and its levels can be elevated in hyperglycemic conditions. MG is a potent precursor of AGEs (advanced glycation end-products). In this study, we investigated if MG can induce angiogenesis dysfunction and whether MG scavengers can ameliorate angiogenesis dysfunction induced by MG. Here, we used cultured human brain microvascular endothelial cells (HBMECs) treated with MG and oxygen-glucose deprivation (OGD) to mimic diabetic stroke in vitro. We also used the MG challenged chicken embryo chorioallantoic membrane (CAM) to study angiogenesis in vivo. Interestingly, administration of MG significantly impaired cell proliferation, cell migration, and tube formation and decreased protein expression of angiogenesis-related factors, which was rescued by three different MG scavengers, glyoxalase 1 (GLO1), aminoguanidine (AG), and N-acetyl cysteine (NAC). In cultured CAM, MG exposure significantly reduced angiogenesis and the angiogenesis-related dysfunction could be attenuated by pretreatment with AG or NAC. Treatment of cultured HBMECs with MG plus OGD increased cellular apoptosis significantly, which could be prevented by exposure to GLO1, AG, or NAC. We also noted that administration of MG increased cellular oxidative stress as measured by reactive oxygen species (ROS) generation, enhanced AGE accumulation, and receptor for advanced glycation end-product (RAGE) expression in the cultured HBMECs, which were partially reversed by GLO1, AG, or NAC. Taken together, our findings demonstrated that GLO1, AG, or NAC administration can ameliorate MG-induced angiogenesis dysfunction, and this can be mainly attributed to attenuated ROS production, reduced cellular apoptosis, and increased levels of angiogenic factors. Overall, this study suggested that GLO1, AG, or NAC may be promising candidate compounds for the treatment of angiogenesis dysfunction caused by hyperglycemia in diabetic ischemic stroke.


2021 ◽  
Vol 23 (1) ◽  
pp. 452
Author(s):  
Donna C. Kennedy ◽  
Barbara Coen ◽  
Antony M. Wheatley ◽  
Karl J. A. McCullagh

The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Andrea Berenyiova ◽  
Iveta Bernatova ◽  
Anna Zemancikova ◽  
Magdalena Drobna ◽  
Martina Cebova ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects host cells through angiotensin-converting enzyme 2 (ACE2). Concurrently, the product of ACE2 action, angiotensin 1–7 (Ang 1–7), binds to Mas receptors within the cardiovascular system and provides protective effects. Therefore, it is crucial to reveal the role of ACE2 inhibition, especially within pre-existing cardiovascular pathologies. In our study, we imitated the action of SARS-CoV-2 in organisms using the low dose of the ACE2 inhibitor MLN-4760 with the aim of investigating to what degree ACE2 inhibition is detrimental to the cardiovascular system of spontaneously hypertensive rats (SHRs), which represent a model of human essential hypertension. Our study revealed the complex action of MLN-4760 in SHRs. On the one hand, we found that MLN-4760 had 1) (pro)obesogenic effects that negatively correlated with alternative renin-angiotensin system activity and Ang 1–7 in plasma, 2) negative effects on ACE1 inhibitor (captopril) action, 3) detrimental effects on the small arteries function and 4) anti-angiogenic effect in the model of chick chorioallantoic membrane. On the other hand, MLN-4760 induced compensatory mechanisms involving strengthened Mas receptor-, nitric oxide- and hydrogen sulfide-mediated signal transduction in the aorta, which was associated with unchanged blood pressure, suggesting beneficial action of MLN-4760 when administered at a low dose.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 13
Author(s):  
Ekaterina A. Sokolenko ◽  
Utta Berchner-Pfannschmidt ◽  
Saskia C. Ting ◽  
Kurt W. Schmid ◽  
Nikolaos E. Bechrakis ◽  
...  

The treatment of uveal melanoma and its metastases has not evolved sufficiently over the last decades in comparison to other tumour entities, posing a great challenge in the field of ocular oncology. Despite improvements in the conventional treatment regime and new discoveries about the genetic and molecular background of the primary tumour, effective treatment strategies to either prevent tumours or treat patients with advanced or metastatic disease are still lacking. New therapeutic options are necessary in order to achieve satisfactory local tumour control, reduce the risk of metastasis development, and preserve the eyeball and possibly the visual function of the eye. The development of in vivo model systems remains crucial for the identification and investigation of potential novel treatment modalities. The aim of this study was the optimisation of the chorioallantoic membrane (CAM) model for uveal melanoma research. We analysed the established CAM assay and its modification after the implantation of three-dimensional spheroids. The chorioallantoic membrane of a chick embryo was used to implant uveal melanoma-cell-line-derived spheroids in order to study their growth rate, angiogenic potential, and metastatic capability. Using the UM 92.1, UPMD2, UPMM3, and Mel270 cell lines, we were able to improve the viability of the embryos from 20% to >80% and to achieve up to a fourfold volume increase of the transplanted spheroid masses. The results point to the value of an optimised chicken embryo assay as an in vivo model for testing novel therapies for uveal melanoma by simplifying the research conditions and by contributing to a considerable reduction in animal experiments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haoxin Shi ◽  
Dong Li ◽  
Qing Shi ◽  
Zhenxia Han ◽  
Yuwei Tan ◽  
...  

Macrophages play important roles in angiogenesis; however, previous studies on macrophage angiogenesis have focused on traditional 2D cultures. In this study, we established a 3D culture system for macrophages using collagen microcarriers and assessed the effect of 3D culture on their angiogenic capabilities. Macrophages grown in 3D culture displayed a significantly different morphology and arrangement under electron microscopy compared to those grown in 2D culture. Tube formation assays and chick embryo chorioallantoic membrane assays further revealed that 3D-cultured macrophages were less angiogenic than those in 2D culture. Whole-transcriptome sequencing showed that nearly 40% of genes were significantly differently expressed, including nine important angiogenic factors of which seven had been downregulated. In addition, the expression of almost all genes related to two important angiogenic pathways was decreased in 3D-cultured macrophages, including the two key angiogenic factors, VEGFA and ANG2. Together, the findings of our study improve our understanding of angiogenesis and 3D macrophage culture in tissues, and provide new avenues and methods for future research on macrophages.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Bianca Nitzsche ◽  
Wen Wei Rong ◽  
Andrean Goede ◽  
Björn Hoffmann ◽  
Fabio Scarpa ◽  
...  

AbstractAngiogenesis describes the formation of new blood vessels from pre-existing vascular structures. While the most studied mode of angiogenesis is vascular sprouting, specific conditions or organs favor intussusception, i.e., the division or splitting of an existing vessel, as preferential mode of new vessel formation. In the present study, sustained (33-h) intravital microscopy of the vasculature in the chick chorioallantoic membrane (CAM) led to the hypothesis of a novel non-sprouting mode for vessel generation, which we termed “coalescent angiogenesis.” In this process, preferential flow pathways evolve from isotropic capillary meshes enclosing tissue islands. These preferential flow pathways progressively enlarge by coalescence of capillaries and elimination of internal tissue pillars, in a process that is the reverse of intussusception. Concomitantly, less perfused segments regress. In this way, an initially mesh-like capillary network is remodeled into a tree structure, while conserving vascular wall components and maintaining blood flow. Coalescent angiogenesis, thus, describes the remodeling of an initial, hemodynamically inefficient mesh structure, into a hierarchical tree structure that provides efficient convective transport, allowing for the rapid expansion of the vasculature with maintained blood supply and function during development.


Author(s):  
K. J. Bot ◽  
F. M. Agwom ◽  
K. Kim ◽  
S. C. Chollom ◽  
P. O. Odumosu ◽  
...  

Access to readily available material for wound healing is very important. The wound healing property of Eleusine coracana a food source in Nigeria was therefore investigated. The ethanolic crude extract of the seed flour was prepared using maceration and qualitative phytochemical screening was carried out on the crude extract using standard methods. The antimicrobial activity of the E. coracana extract was determined using the disc diffusion method against E. coli, S. aureus, P. aeruginosa, and C. tetani. The wound healing property assay was carried out using the Chorioallantoic Membrane Model (CAM) at 50mg, 100mg, 150mg, and 200mg/ml concentration with the basic Fibroblast Growth Factor (bFGF) as the positive control. The crude extract was further fractionated into Hexane, Methanolic, and Aqueous fractions and then subjected to amino acid content analysis using the Applied Biosystems Phenylthiohydantoin (PTH) Amino Acid Analyzer. The phytochemical screening reveals the presence of alkaloids, steroids, terpenes, flavonoids, carbohydrates, glycoside, and protein. E. coli and S. aureus were susceptible to the E. coracana extract at a Minimum Inhibitory Concentration (MIC) of 50µg/ml while the P. aeruginosa was only susceptible at 200µg/ml and C. tetani was not susceptible at all the concentrations used. An increase in percentage angiogenesis was observed at all doses of the extract used indicating good wound healing properties. The amino acid profile reveals the presence of glycine, a proline that is important in wound healing. The E. coracana seeds, therefore, have wound healing properties based on the CAM model.


Sign in / Sign up

Export Citation Format

Share Document