A class of singular stochastic control problems

1983 ◽  
Vol 15 (2) ◽  
pp. 225-254 ◽  
Author(s):  
Ioannis Karatzas

We consider the problem of tracking a Brownian motion by a process of bounded variation, in such a way as to minimize total expected cost of both ‘action' and ‘deviation from a target state 0'. The former is proportional to the amount of control exerted to date, while the latter is being measured by a function which can be viewed, for simplicity, as quadratic. We discuss the discounted, stationary and finite-horizon variants of the problem. The answer to all three questions takes the form of exerting control in a singular manner, in order not to exit from a certain region. Explicit solutions are found for the first and second questions, while the third is reduced to an appropriate optimal stopping problem. This reduction yields properties, as well as global upper and lower bounds, for the associated moving boundary. The pertinent Abelian and ergodic relationships for the corresponding value functions are also derived.

1983 ◽  
Vol 15 (02) ◽  
pp. 225-254 ◽  
Author(s):  
Ioannis Karatzas

We consider the problem of tracking a Brownian motion by a process of bounded variation, in such a way as to minimize total expected cost of both ‘action' and ‘deviation from a target state 0'. The former is proportional to the amount of control exerted to date, while the latter is being measured by a function which can be viewed, for simplicity, as quadratic. We discuss the discounted, stationary and finite-horizon variants of the problem. The answer to all three questions takes the form of exerting control in asingularmanner, in order not to exit from a certain region. Explicit solutions are found for the first and second questions, while the third is reduced to an appropriate optimal stopping problem. This reduction yields properties, as well as global upper and lower bounds, for the associated moving boundary. The pertinent Abelian and ergodic relationships for the corresponding value functions are also derived.


1998 ◽  
Vol 35 (04) ◽  
pp. 856-872 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peskir

Explicit formulas are found for the payoff and the optimal stopping strategy of the optimal stopping problem supτ E (max0≤t≤τ X t − c τ), where X = (X t ) t≥0 is geometric Brownian motion with drift μ and volatility σ > 0, and the supremum is taken over all stopping times for X. The payoff is shown to be finite, if and only if μ < 0. The optimal stopping time is given by τ* = inf {t > 0 | X t = g * (max0≤t≤s X s )} where s ↦ g *(s) is the maximal solution of the (nonlinear) differential equation under the condition 0 < g(s) < s, where Δ = 1 − 2μ / σ2 and K = Δ σ2 / 2c. The estimate is established g *(s) ∼ ((Δ − 1) / K Δ)1 / Δ s 1−1/Δ as s → ∞. Applying these results we prove the following maximal inequality: where τ may be any stopping time for X. This extends the well-known identity E (sup t>0 X t ) = 1 − (σ 2 / 2 μ) and is shown to be sharp. The method of proof relies upon a smooth pasting guess (for the Stephan problem with moving boundary) and the Itô–Tanaka formula (being applied two-dimensionally). The key point and main novelty in our approach is the maximality principle for the moving boundary (the optimal stopping boundary is the maximal solution of the differential equation obtained by a smooth pasting guess). We think that this principle is by itself of theoretical and practical interest.


2014 ◽  
Vol 51 (4) ◽  
pp. 898-909
Author(s):  
Moritz Duembgen ◽  
L. C. G. Rogers

In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.


1998 ◽  
Vol 35 (4) ◽  
pp. 856-872 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peskir

Explicit formulas are found for the payoff and the optimal stopping strategy of the optimal stopping problem supτE (max0≤t≤τXt − c τ), where X = (Xt)t≥0 is geometric Brownian motion with drift μ and volatility σ > 0, and the supremum is taken over all stopping times for X. The payoff is shown to be finite, if and only if μ < 0. The optimal stopping time is given by τ* = inf {t > 0 | Xt = g* (max0≤t≤sXs)} where s ↦ g*(s) is the maximal solution of the (nonlinear) differential equation under the condition 0 < g(s) < s, where Δ = 1 − 2μ / σ2 and K = Δ σ2 / 2c. The estimate is established g*(s) ∼ ((Δ − 1) / K Δ)1 / Δs1−1/Δ as s → ∞. Applying these results we prove the following maximal inequality: where τ may be any stopping time for X. This extends the well-known identity E (supt>0Xt) = 1 − (σ 2 / 2 μ) and is shown to be sharp. The method of proof relies upon a smooth pasting guess (for the Stephan problem with moving boundary) and the Itô–Tanaka formula (being applied two-dimensionally). The key point and main novelty in our approach is the maximality principle for the moving boundary (the optimal stopping boundary is the maximal solution of the differential equation obtained by a smooth pasting guess). We think that this principle is by itself of theoretical and practical interest.


2005 ◽  
Vol 42 (03) ◽  
pp. 826-838 ◽  
Author(s):  
X. Guo ◽  
J. Liu

Consider a geometric Brownian motion X t (ω) with drift. Suppose that there is an independent source that sends signals at random times τ 1 &lt; τ 2 &lt; ⋯. Upon receiving each signal, a decision has to be made as to whether to stop or to continue. Stopping at time τ will bring a reward S τ , where S t = max(max0≤u≤t X u , s) for some constant s ≥ X 0. The objective is to choose an optimal stopping time to maximize the discounted expected reward E[e−r τ i S τ i | X 0 = x, S 0 = s], where r is a discount factor. This problem can be viewed as a randomized version of the Bermudan look-back option pricing problem. In this paper, we derive explicit solutions to this optimal stopping problem, assuming that signal arrival is a Poisson process with parameter λ. Optimal stopping rules are differentiated by the frequency of the signal process. Specifically, there exists a threshold λ* such that if λ&gt;λ*, the optimal stopping problem is solved via the standard formulation of a ‘free boundary’ problem and the optimal stopping time τ * is governed by a threshold a * such that τ * = inf{τ n : X τ n ≤a * S τ n }. If λ≤λ* then it is optimal to stop immediately a signal is received, i.e. at τ * = τ 1. Mathematically, it is intriguing that a smooth fit is critical in the former case while irrelevant in the latter.


2005 ◽  
Vol 42 (3) ◽  
pp. 826-838 ◽  
Author(s):  
X. Guo ◽  
J. Liu

Consider a geometric Brownian motion Xt(ω) with drift. Suppose that there is an independent source that sends signals at random times τ1 < τ2 < ⋯. Upon receiving each signal, a decision has to be made as to whether to stop or to continue. Stopping at time τ will bring a reward Sτ, where St = max(max0≤u≤tXu, s) for some constant s ≥ X0. The objective is to choose an optimal stopping time to maximize the discounted expected reward E[e−rτiSτi | X0 = x, S0 = s], where r is a discount factor. This problem can be viewed as a randomized version of the Bermudan look-back option pricing problem. In this paper, we derive explicit solutions to this optimal stopping problem, assuming that signal arrival is a Poisson process with parameter λ. Optimal stopping rules are differentiated by the frequency of the signal process. Specifically, there exists a threshold λ* such that if λ>λ*, the optimal stopping problem is solved via the standard formulation of a ‘free boundary’ problem and the optimal stopping time τ* is governed by a threshold a* such that τ* = inf{τn: Xτn≤a*Sτn}. If λ≤λ* then it is optimal to stop immediately a signal is received, i.e. at τ* = τ1. Mathematically, it is intriguing that a smooth fit is critical in the former case while irrelevant in the latter.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Wei Chen

The target of this paper is to establish the bid-ask pricing framework for the American contingent claims against risky assets with G-asset price systems on the financial market under Knightian uncertainty. First, we prove G-Dooby-Meyer decomposition for G-supermartingale. Furthermore, we consider bid-ask pricing American contingent claims under Knightian uncertainty, by using G-Dooby-Meyer decomposition; we construct dynamic superhedge strategies for the optimal stopping problem and prove that the value functions of the optimal stopping problems are the bid and ask prices of the American contingent claims under Knightian uncertainty. Finally, we consider a free boundary problem, prove the strong solution existence of the free boundary problem, and derive that the value function of the optimal stopping problem is equivalent to the strong solution to the free boundary problem.


2014 ◽  
Vol 51 (04) ◽  
pp. 898-909
Author(s):  
Moritz Duembgen ◽  
L. C. G. Rogers

In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.


1988 ◽  
Vol 20 (2) ◽  
pp. 411-426 ◽  
Author(s):  
Paavo Salminen

Let t → h(t) be a smooth function on ℝ+, and B = {Bs; s ≥ 0} a standard Brownian motion. In this paper we derive expressions for the distributions of the variables Th: = inf {S; Bs = h(s)} and λth: = sup {s ≦ t; Bs = h(s)}, where t> 0 is given. Our formulas contain an expected value of a Brownian functional. It is seen that this can be computed, principally, using Feynman–Kac&s formula. Further, we discuss in our framework the familiar examples with linear and square root boundaries. Moreover our approach provides in some extent explicit solutions for the second-order boundaries.


Sign in / Sign up

Export Citation Format

Share Document