Generalizations of the Pollaczek-Khinchin integral equation in the theory of queues

1986 ◽  
Vol 18 (4) ◽  
pp. 952-990 ◽  
Author(s):  
Marcel F. Neuts

A classical result in queueing theory states that in the stable M/G/1 queue, the stationary distribution W(x) of the waiting time of an arriving customer or of the virtual waiting time satisfies a linear Volterra integral equation of the second kind, of convolution type. For many variants of the M/G/1 queue, there are corresponding integral equations, which in most cases differ from the Pollaczek–Khinchin equation only in the form of the inhomogeneous term. This leads to interesting factorizations of the waiting-time distribution and to substantial algorithmic simplifications. In a number of priority queues, the waiting-time distributions satisfy Volterra integral equations whose kernel is a functional of the busy-period distribution in related M/G/1 queues. In other models, such as the M/G/1 queue with Bernoulli feedback or with limited admissions of customers per service, there is a more basic integral equation of Volterra type, which yields a probability distribution in terms of which the waiting-time distributions are conveniently expressed.For several complex queueing models with an embedded Markov renewal process of M/G/1 type, one obtains matrix Volterra integral equations for the waiting-time distributions or for related vectors of mass functions. Such models include the M/SM/1 and the N/G/1 queues, as well as the M/G/1 queue with some forms of bulk service.When the service-time distributions are of phase type, the numerical computation of waiting-time distributions may commonly be reduced to the solution of systems of linear differential equations with constant coefficients.

1986 ◽  
Vol 18 (04) ◽  
pp. 952-990 ◽  
Author(s):  
Marcel F. Neuts

A classical result in queueing theory states that in the stable M/G/1 queue, the stationary distribution W(x) of the waiting time of an arriving customer or of the virtual waiting time satisfies a linear Volterra integral equation of the second kind, of convolution type. For many variants of the M/G/1 queue, there are corresponding integral equations, which in most cases differ from the Pollaczek–Khinchin equation only in the form of the inhomogeneous term. This leads to interesting factorizations of the waiting-time distribution and to substantial algorithmic simplifications. In a number of priority queues, the waiting-time distributions satisfy Volterra integral equations whose kernel is a functional of the busy-period distribution in related M/G/1 queues. In other models, such as the M/G/1 queue with Bernoulli feedback or with limited admissions of customers per service, there is a more basic integral equation of Volterra type, which yields a probability distribution in terms of which the waiting-time distributions are conveniently expressed. For several complex queueing models with an embedded Markov renewal process of M/G/1 type, one obtains matrix Volterra integral equations for the waiting-time distributions or for related vectors of mass functions. Such models include the M/SM/1 and the N/G/1 queues, as well as the M/G/1 queue with some forms of bulk service. When the service-time distributions are of phase type, the numerical computation of waiting-time distributions may commonly be reduced to the solution of systems of linear differential equations with constant coefficients.


1981 ◽  
Vol 18 (4) ◽  
pp. 901-912 ◽  
Author(s):  
Marcel F. Neuts

It is known that the stable GI/PH/1 queue has an embedded Markov chain whose invariant probability vector is matrix-geometric with a rate matrix R. In terms of the matrix R, the stationary waiting-time distributions at arrivals, at an arbitrary time point and until the customer's departure may be evaluated by solving finite, highly structured systems of linear differential equations with constant coefficients. Asymptotic results, useful in truncating the computations, are also obtained. The queue discipline is first-come, first-served.


1981 ◽  
Vol 18 (04) ◽  
pp. 901-912 ◽  
Author(s):  
Marcel F. Neuts

It is known that the stable GI/PH/1 queue has an embedded Markov chain whose invariant probability vector is matrix-geometric with a rate matrix R. In terms of the matrix R, the stationary waiting-time distributions at arrivals, at an arbitrary time point and until the customer's departure may be evaluated by solving finite, highly structured systems of linear differential equations with constant coefficients. Asymptotic results, useful in truncating the computations, are also obtained. The queue discipline is first-come, first-served.


1973 ◽  
Vol 5 (01) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


2002 ◽  
Vol 39 (03) ◽  
pp. 619-629 ◽  
Author(s):  
Gang Uk Hwang ◽  
Bong Dae Choi ◽  
Jae-Kyoon Kim

We consider a discrete-time queueing system with the discrete autoregressive process of order 1 (DAR(1)) as an input process and obtain the actual waiting time distribution and the virtual waiting time distribution. As shown in the analysis, our approach provides a natural numerical algorithm to compute the waiting time distributions, based on the theory of the GI/G/1 queue, and consequently we can easily investigate the effect of the parameters of the DAR(1) on the waiting time distributions. We also derive a simple approximation of the asymptotic decay rate of the tail probabilities for the virtual waiting time in the heavy traffic case.


Author(s):  
Daniel Cao Labora ◽  
Rosana Rodríguez-López

AbstractThe main goal of this article is to show a new method to solve some Fractional Order Integral Equations (FOIE), more precisely the ones which are linear, have constant coefficients and all the integration orders involved are rational. The method essentially turns a FOIE into an Ordinary Integral Equation (OIE) by applying a suitable fractional integral operator.After discussing the state of the art, we present the idea of our construction in a particular case (Abel integral equation). After that, we propose our method in a general case, showing that it does work when dealing with a family of “additive” operators over a vector space. Later, we show that our construction is always possible when dealing with any FOIE under the above-mentioned hypotheses. Furthermore, it is shown that our construction is “optimal” in the sense that the OIE that we obtain has the least possible order.


Author(s):  
Sergey M. Ermakov ◽  
◽  
Maxim G. Smilovitskiy ◽  

Monte-Carlo approach towards solving Cauchy problem for large systems of linear differential equations is being proposed in this paper. Firstly, a quick overlook of previously obtained results from applying the approach towards Fredholm-type integral equations is being made. In the main part of the paper, a similar method is being applied towards a linear system of ODE. It is transformed into an equivalent system of Volterra-type integral equations, which relaxes certain limitations being present due to necessary conditions for convergence of majorant series. The following theorems are being stated. Theorem 1 provides necessary compliance conditions that need to be imposed upon initial and transition distributions of a required Markov chain, for which an equality between estimate’s expectation and a desirable vector product would hold. Theorem 2 formulates an equation that governs estimate’s variance, while theorem 3 states a form for Markov chain parameters that minimise the variance. Proofs are given, following the statements. A system of linear ODEs that describe a closed queue made up of ten virtual machines and seven virtual service hubs is then solved using the proposed approach. Solutions are being obtained both for a system with constant coefficients and time-variable coefficients, where breakdown intensity is dependent on t. Comparison is being made between Monte-Carlo and Rungge Kutta obtained solutions. The results can be found in corresponding tables.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Kevser Köklü

In this paper, the resolvent of an integral equation was found with natural transform which is a new transformation which converged to Laplace and Sumudu transformations, and the result was confirmed by the Sumudu transform. At the same time, a solution to the first type of logarithmic kernel Volterra integral equations has been produced by the natural transform.


1973 ◽  
Vol 5 (1) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


1975 ◽  
Vol 12 (4) ◽  
pp. 779-792 ◽  
Author(s):  
Per Hokstad

The G/M/m queue with only s waiting places is studied. We start by studying the joint distribution of the number of customers present at time t and the time elapsing until the next arrival after t. This gives the asymptotic distribution of the number of customers at the moment of an arrival and at an arbitrary moment. Then waiting time and virtual waiting time distributions are easily obtained. For the G/M/1 queue also the transient solution is given. Finally the case s = ∞ is considered.


Sign in / Sign up

Export Citation Format

Share Document