On some diffusion approximations to queueing systems

1986 ◽  
Vol 18 (4) ◽  
pp. 991-1014 ◽  
Author(s):  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

For a class of models of adaptive queueing systems an exact diffusion approximation is derived with the aim of obtaining information on the evolution of the systems. Our approximating diffusion process includes the Wiener and the Ornstein–Uhlenbeck processes with reflecting boundaries at 0. The goodness of the approximations is thoroughly discussed and the closed-form solutions obtained for the diffusion processes are compared with those holding for the queueing system in order to investigate the conditions under which reliable information can be obtained from the approximating continuous models. For the latter the transient behaviour is quantitatively analysed and the distribution of the busy period is determined in closed form.

1986 ◽  
Vol 18 (04) ◽  
pp. 991-1014 ◽  
Author(s):  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

For a class of models of adaptive queueing systems an exact diffusion approximation is derived with the aim of obtaining information on the evolution of the systems. Our approximating diffusion process includes the Wiener and the Ornstein–Uhlenbeck processes with reflecting boundaries at 0. The goodness of the approximations is thoroughly discussed and the closed-form solutions obtained for the diffusion processes are compared with those holding for the queueing system in order to investigate the conditions under which reliable information can be obtained from the approximating continuous models. For the latter the transient behaviour is quantitatively analysed and the distribution of the busy period is determined in closed form.


2008 ◽  
Vol 52 (3) ◽  
pp. 1615-1635 ◽  
Author(s):  
M. Concepción Ausín ◽  
Michael P. Wiper ◽  
Rosa E. Lillo

1997 ◽  
Vol 34 (03) ◽  
pp. 800-805 ◽  
Author(s):  
Vyacheslav M. Abramov

This paper consists of two parts. The first part provides a more elementary proof of the asymptotic theorem of the refusals stream for an M/GI/1/n queueing system discussed in Abramov (1991a). The central property of the refusals stream discussed in the second part of this paper is that, if the expectations of interarrival and service time of an M/GI/1/n queueing system are equal to each other, then the expectation of the number of refusals during a busy period is equal to 1. This property is extended for a wide family of single-server queueing systems with refusals including, for example, queueing systems with bounded waiting time.


1987 ◽  
Vol 19 (4) ◽  
pp. 974-994 ◽  
Author(s):  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

Time-non-homogeneous diffusion approximations to single server–single queue–FCFS discipline systems are considered. Under various assumptions on the nature of the time-dependent functions appearing in the infinitesimal moments the transient and the regime behaviour of the approximating diffusions are analysed in some detail. Special attention is then given to the study of a diffusion approximation characterized by a linear drift and by a periodically time-varying infinitesimal variance. Unlike the behaviour of transition functions and moments, the p.d.f. of the busy period is seen to be unaffected by the presence of such periodicity.


1995 ◽  
Vol 32 (03) ◽  
pp. 635-648 ◽  
Author(s):  
R. Gutiérrez Jáimez ◽  
P. Román Román ◽  
F. Torres Ruiz

In this paper we prove the validity of the Volterra integral equation for the evaluation of first-passage-time probability densities through varying boundaries, given by Buonocore et al. [1], for the case of diffusion processes not necessarily time-homogeneous. We study, specifically those processes that can be obtained from the Wiener process in the sense of [5]. A study of the kernel of the integral equation, in the same way as that by Buonocore et al. [1], is done. We obtain the boundaries for which closed-form solutions of the integral equation, without having to solve the equation, can be obtained. Finally, a few examples are given to indicate the actual use of our method.


1987 ◽  
Vol 19 (04) ◽  
pp. 974-994 ◽  
Author(s):  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

Time-non-homogeneous diffusion approximations to single server–single queue–FCFS discipline systems are considered. Under various assumptions on the nature of the time-dependent functions appearing in the infinitesimal moments the transient and the regime behaviour of the approximating diffusions are analysed in some detail. Special attention is then given to the study of a diffusion approximation characterized by a linear drift and by a periodically time-varying infinitesimal variance. Unlike the behaviour of transition functions and moments, the p.d.f. of the busy period is seen to be unaffected by the presence of such periodicity.


1964 ◽  
Vol 4 (4) ◽  
pp. 489-505 ◽  
Author(s):  
D. J. Daley

SummaryThe paper considers the queueing system GI/G/1 with a type of customer impatience, namely, that the total queueing-time is uniformly limited. Using Lindiley's approach [10], an integral equation for the limiting waiting- time distribution is derived, and this is solved explicitly for M/G/1 using an expansion of the Pollaczek-Khintchine formula. It is also solved, in principle for Ej/G/l, and explicitly for Ej/Ek/l. A duality noted between GIA(x)/GB(x)/l and GIB(x)/GA(x)/l relates solutions for GI/Ek/l to Ek/G/l. Finally the equation for the busy period in GI/G/l is derived and related to the no-customer-loss distribution and dual distributions.


2019 ◽  
Vol 100 (3) ◽  
Author(s):  
Haozhe Shan ◽  
Rubén Moreno-Bote ◽  
Jan Drugowitsch

2005 ◽  
Vol 46 (3) ◽  
pp. 361-377 ◽  
Author(s):  
Mihaela T. Matache ◽  
Valentin Matache

AbstractA multiple fractional Brownian motion (FBM)-based traffic model is considered. Various lower bounds for the overflow probability of the associated queueing system are obtained. Based on a probabilistic bound for the busy period of an ATM queueing system associated with a multiple FBM-based input traffic, a minimal dynamic buffer allocation function (DBAF) is obtained and a DBAF-allocation algorithm is designed. The purpose is to create an upper bound for the queueing system associated with the traffic. This upper bound, called a DBAF, is a function of time, dynamically bouncing with the traffic. An envelope process associated with the multiple FBM-based traffic model is introduced and used to estimate the queue size of the queueing system associated with that traffic model.


1979 ◽  
Vol 16 (03) ◽  
pp. 631-640 ◽  
Author(s):  
Qui Hoon Choo ◽  
Brian Conolly

The repeated orders queueing system (ROO) permits no waiting or queue in the normal sense. Instead customers who find the service (or device, to use an engineering term) busy make reapplications at random intervals and in random order until their needs are met. Thus a second demand stream supplements the basic first arrival stream. Familiar examples are provided in a telephone communication setting, in particular in the context of a multiaccess computing system. Cohen [3] and Aleksandrov [1] made the first contributions to the theory of ROO. This paper complements their work with a steady-state analysis of system time (waiting time including service of a new arrival), of service idle time, and of system busy period.


Sign in / Sign up

Export Citation Format

Share Document