scholarly journals Product forms for queueing networks with state-dependent multiple job transitions

1991 ◽  
Vol 23 (1) ◽  
pp. 152-187 ◽  
Author(s):  
Richard J. Boucherie ◽  
Nico M. Van DIJK

A general framework of continuous-time queueing networks is studied with simultaneous state dependent service completions such as due to concurrent servicing or discrete-time slotting and with state dependent batch routings such as most typically modelling blocking. By using a key notion of group-local-balance, necessary and sufficient conditions are given for the stationary distribution to be of product form. These conditions and a constructive computation of the product form are based upon merely local solutions of the group-local-balance equations which can usually be solved explicitly for concrete networks. Moreover, a decomposition theorem is presented to separate service and routing conditions. General batch service and batch routing examples yielding a product form are hereby concluded. As illustrated by various examples, known results on both discrete- and continuous-time queueing networks are unified and extended.

1991 ◽  
Vol 23 (01) ◽  
pp. 152-187 ◽  
Author(s):  
Richard J. Boucherie ◽  
Nico M. Van DIJK

A general framework of continuous-time queueing networks is studied with simultaneous state dependent service completions such as due to concurrent servicing or discrete-time slotting and with state dependent batch routings such as most typically modelling blocking. By using a key notion of group-local-balance, necessary and sufficient conditions are given for the stationary distribution to be of product form. These conditions and a constructive computation of the product form are based upon merely local solutions of the group-local-balance equations which can usually be solved explicitly for concrete networks. Moreover, a decomposition theorem is presented to separate service and routing conditions. General batch service and batch routing examples yielding a product form are hereby concluded. As illustrated by various examples, known results on both discrete- and continuous-time queueing networks are unified and extended.


1989 ◽  
Vol 21 (3) ◽  
pp. 681-701 ◽  
Author(s):  
Nicholas Bambos ◽  
Jean Walrand

We consider a single server first-come-first-served queue with a stationary and ergodic input. The service rate is a general function of the workload in the queue. We provide the necessary and sufficient conditions for the stability of the system and the asymptotic convergence of the workload process to a finite stationary process at large times. Then, we consider acyclic networks of queues in which the service rate of any queue is a function of the workloads of this and of all the preceding queues. The stability problem is again studied. The results are then extended to analogous systems with periodic inputs.


1989 ◽  
Vol 21 (03) ◽  
pp. 681-701 ◽  
Author(s):  
Nicholas Bambos ◽  
Jean Walrand

We consider a single server first-come-first-served queue with a stationary and ergodic input. The service rate is a general function of the workload in the queue. We provide the necessary and sufficient conditions for the stability of the system and the asymptotic convergence of the workload process to a finite stationary process at large times. Then, we consider acyclic networks of queues in which the service rate of any queue is a function of the workloads of this and of all the preceding queues. The stability problem is again studied. The results are then extended to analogous systems with periodic inputs.


1992 ◽  
Vol 6 (3) ◽  
pp. 271-276 ◽  
Author(s):  
Erol Gelenbe ◽  
Rolf Schassberger

We prove necessary and sufficient conditions for the existence and uniqueness of the stationary solution of the queueing networks (G-networks) with negative and positive customers introduced in Gelenbe [3], which have been shown to have product form. First, the existence of the solution of the nonlinear customer flow equations is established using Brouwer's fixed-point theorem; this result is valid for stable and unstable systems, as well as for certain networks that may not have product form. Then, the result is used to establish general stability related to the usual “load factor less than 1” criterion of queueing systems for G-networks with product form.


1998 ◽  
Vol 30 (04) ◽  
pp. 1111-1129 ◽  
Author(s):  
Hideaki Yamashita ◽  
Masakiyo Miyazawa

Queueing networks have been rather restricted in order to have product form distributions for network states. Recently, several new models have appeared and enlarged this class of product form networks. In this paper, we consider another new type of queueing network with concurrent batch movements in terms of such product form results. A joint distribution of the requested batch sizes for departures and the batch sizes of the corresponding arrivals may be arbitrary. Under a certain modification of the network and mild regularity conditions, we give necessary and sufficient conditions for the network state to have the product form distribution, which is shown to provide an upper bound for the one in the original network. It is shown that two special settings satisfy these conditions. Algorithms to calculate their stationary distributions are considered, with numerical examples.


1998 ◽  
Vol 30 (4) ◽  
pp. 1111-1129 ◽  
Author(s):  
Hideaki Yamashita ◽  
Masakiyo Miyazawa

Queueing networks have been rather restricted in order to have product form distributions for network states. Recently, several new models have appeared and enlarged this class of product form networks. In this paper, we consider another new type of queueing network with concurrent batch movements in terms of such product form results. A joint distribution of the requested batch sizes for departures and the batch sizes of the corresponding arrivals may be arbitrary. Under a certain modification of the network and mild regularity conditions, we give necessary and sufficient conditions for the network state to have the product form distribution, which is shown to provide an upper bound for the one in the original network. It is shown that two special settings satisfy these conditions. Algorithms to calculate their stationary distributions are considered, with numerical examples.


2005 ◽  
Vol 37 (01) ◽  
pp. 185-211 ◽  
Author(s):  
Antonis Economou

Consider a continuous-time Markov chain evolving in a random environment. We study certain forms of interaction between the process of interest and the environmental process, under which the stationary joint distribution is tractable. Moreover, we obtain necessary and sufficient conditions for a product-form stationary distribution. A number of examples that illustrate the applicability of our results in queueing and population growth models are also included.


2005 ◽  
Vol 37 (1) ◽  
pp. 185-211 ◽  
Author(s):  
Antonis Economou

Consider a continuous-time Markov chain evolving in a random environment. We study certain forms of interaction between the process of interest and the environmental process, under which the stationary joint distribution is tractable. Moreover, we obtain necessary and sufficient conditions for a product-form stationary distribution. A number of examples that illustrate the applicability of our results in queueing and population growth models are also included.


1994 ◽  
Vol 26 (02) ◽  
pp. 436-455 ◽  
Author(s):  
W. Henderson ◽  
B. S. Northcote ◽  
P. G. Taylor

It has recently been shown that networks of queues with state-dependent movement of negative customers, and with state-independent triggering of customer movement have product-form equilibrium distributions. Triggers and negative customers are entities which, when arriving to a queue, force a single customer to be routed through the network or leave the network respectively. They are ‘signals' which affect/control network behaviour. The provision of state-dependent intensities introduces queues other than single-server queues into the network. This paper considers networks with state-dependent intensities in which signals can be either a trigger or a batch of negative customers (the batch size being determined by an arbitrary probability distribution). It is shown that such networks still have a product-form equilibrium distribution. Natural methods for state space truncation and for the inclusion of multiple customer types in the network can be viewed as special cases of this state dependence. A further generalisation allows for the possibility of signals building up at nodes.


2003 ◽  
Vol 35 (04) ◽  
pp. 1111-1130 ◽  
Author(s):  
Andrew G. Hart ◽  
Servet Martínez ◽  
Jaime San Martín

We study the λ-classification of absorbing birth-and-death processes, giving necessary and sufficient conditions for such processes to be λ-transient, λ-null recurrent and λ-positive recurrent.


Sign in / Sign up

Export Citation Format

Share Document