Notes on Age Determination and Growth of the Atlantic Bluefin Tuna, Thunnus thynnus (Linnaeus)

Copeia ◽  
1941 ◽  
Vol 1941 (2) ◽  
pp. 70 ◽  
Author(s):  
J. R. Westman ◽  
P. W. Gilbert
1985 ◽  
Vol 42 (5) ◽  
pp. 938-946 ◽  
Author(s):  
Eric D. Prince ◽  
Dennis W. Lee ◽  
Joaquin C. Javech

Internal zonations (bands) were observed in thin sections of vertebrae from 98% of the 200 Atlantic bluefin tuna, Thunnus thynnus, we examined between 49.5 and 284.5 cm fork length (FL). These zones occurred in the solid bone area of the sections corresponding to the outer margin of the vertebral cone surface. The remaining area of the section nearest the focus is characterized by spongy bone which obstructs internal zonations associated with early growth history. We present a modified method of determining vertebra age of Atlantic bluefin tuna by adopting a counting procedure which involves enumerating distal internal bands in the sections, as well as proximal external bands on the cone surface to assign ages. Accuracy of this methodology was assessed by evaluating fish where age was known from length frequency and tagging data. The accuracy and precision of estimating age of giant bluefin tuna [Formula: see text] was improved using our vertebral section method of age determination compared with the more traditional whole vertebra method of ageing. However, results of the vertebral section method in ageing medium tuna (146.0–208.9 cm FL) were inconclusive and this method overestimated age of school tuna (49.5–145.9 cm FL) and should not be used for juvenile age groups. The occurrence of internal zonations in vertebrae of teleosts other than bluefin tuna should be examined as a possible source of age and growth information.


Author(s):  
Akihiro Shiroza ◽  
Estrella Malca ◽  
John T Lamkin ◽  
Trika Gerard ◽  
Michael R Landry ◽  
...  

Abstract Bluefin tuna spawn in restricted areas of subtropical oligotrophic seas. Here, we investigate the zooplankton prey and feeding selectivity of early larval stages of Atlantic bluefin tuna (ABT, Thunnus thynnus) in larval rearing habitat of the Gulf of Mexico. Larvae and zooplankton were collected during two multi-day Lagrangian experiments during peak spawning in May 2017 and 2018. Larvae were categorized by flexion stage and standard length. We identified, enumerated and sized zooplankton from larval gut contents and in the ambient community. Ciliates were quantitatively important (up to 9%) in carbon-based diets of early larvae. As larvae grew, diet composition and prey selection shifted from small copepod nauplii and calanoid copepodites to larger podonid cladocerans, which accounted for up to 70% of ingested carbon. Even when cladoceran abundances were <0.2 m−3, they comprised 23% of postflexion stage diet. Feeding behaviors of larvae at different development stages were more specialized, and prey selection narrowed to appendicularians and primarily cladocerans when these taxa were more abundant. Our findings suggest that ABT larvae have the capacity to switch from passive selection, regulated by physical factors, to active selection of presumably energetically optimal prey.


2008 ◽  
Vol 92 (2-3) ◽  
pp. 242-254 ◽  
Author(s):  
Piero Addis ◽  
John Mark Dean ◽  
Paola Pesci ◽  
Ivan Locci ◽  
Rita Cannas ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0141478 ◽  
Author(s):  
Enrique Rodriguez-Marin ◽  
Mauricio Ortiz ◽  
José María Ortiz de Urbina ◽  
Pablo Quelle ◽  
John Walter ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Deirdre Brophy ◽  
Naiara Rodríguez-Ezpeleta ◽  
Igaratza Fraile ◽  
Haritz Arrizabalaga

Abstract Atlantic bluefin tuna (Thunnus thynnus) from the two main spawning populations in the Mediterranean and Gulf of Mexico occur together in the western, central and eastern Atlantic. Stock composition of catches from mixing areas is uncertain, presenting a major challenge to the sustainable management of the fisheries. This study combines genetic and chemical markers to develop an integrated method of population assignment. Stable isotope signatures (δ13C and δ18O) in the otolith core of adults from the two main spawning populations (adult baselines) showed less overlap than those of yearlings (12–18 months old) from western and eastern nursery areas suggesting that some exchange occurs towards the end of the yearling phase. The integrated model combined δ18O with four genetic markers (SNPs) to distinguish the adult baselines with greater accuracy than chemical or genetic markers alone. When used to assign individuals from the mixing areas to their population of origin, the integrated model resolved some (but not all) discrepancies between the chemistry and genetic methods. Some individuals in the mixing area had otolith δ18O values and genetic profiles which when taken together, were not representative of either population. These fish may originate from another Atlantic spawning area or may represent population contingents that move away from the main spawning areas during the first year of life. This complexity in stock structure is not captured by the current two-stock model.


2013 ◽  
Vol 15 (1) ◽  
pp. 115 ◽  
Author(s):  
A. HATTOUR ◽  
W. KOCHED

The present study analysis size and weight-frequency composition of Atlantic bluefin tuna (Thunnus thynnus thynnus) fattened in Tunisian farms for the period 2005-2010 and compare these morphometric parameters with those from wild bluefin tuna landed on 2001 at Sfax port (Tunisia). A total of 6,757 wild and fattened bluefin tuna were measured as straight-line fork length and 49,962 were weighted. Average value of K for wild BFT was 1.59 and respectively 2.43, 2.32, 2.15, 1.61, 1.79 and 1.90 for Fattened BFT after 5-6 months from 2005 to 2010. Length frequency of fattened bluefin showed clearly a substantial increase in juvenile rate. The percentage which was 21.4% in 2005 reached 31.3% in 2009. For weight distribution, 73.3% of the fish caught in 2001 are below the annual mean (75.7 kg), while means 71 to 72% of fattened fish were under annual mean weight. Year 2009 is exceptional because only 57% of fattened fish were under the mean weight. This demonstrates that the fish caught are becoming increasingly small. Mean weight for fattening period (77 to 124 kg) are obviously higher than those of the wild fish (75,7kg).This study showed an increment in the amount of specimen under first sexual maturity which will not have the chance to spawn.


Sign in / Sign up

Export Citation Format

Share Document