age and growth
Recently Published Documents


TOTAL DOCUMENTS

1497
(FIVE YEARS 211)

H-INDEX

50
(FIVE YEARS 4)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262281
Author(s):  
Virginia R. Shervette ◽  
Jesús M. Rivera Hernández

Ensuring the accuracy of age estimation in fisheries science through validation is an essential step in managing species for long-term sustainable harvest. The current study used Δ14 C in direct validation of age estimation for queen triggerfish Balistes vetula and conclusively documented that triggerfish sagittal otoliths provide more accurate and precise age estimates relative to dorsal spines. Caribbean fish samples (n = 2045) ranged in size from 67–473 mm fork length (FL); 23 fish from waters of the southeastern U.S. (SEUS) Atlantic coast ranged in size from 355–525 mm FL. Otolith-based age estimates from Caribbean fish range from 0–23 y, dorsal spine-based age estimates ranged from 1–14 y. Otolith-based age estimates for fish from the SEUS ranged from 8–40 y. Growth function estimates from otoliths in the current study (L∞ = 444, K = 0.13, t0 = -1.12) differed from spined-derived estimates in the literature. Our work indicates that previously reported maximum ages for Balistes species based on spine-derived age estimates may underestimate longevity of these species since queen triggerfish otolith-based ageing extended maximum known age for the species by nearly three-fold (14 y from spines versus 40 y from otoliths). Future research seeking to document age and growth population parameters of Balistes species should strongly consider incorporating otolith-based ageing in the research design.


2022 ◽  
Vol 12 (01) ◽  
pp. 91-102
Author(s):  
Heng Zhang ◽  
Chao Yang ◽  
Bo Xu ◽  
Yongchuang Shi ◽  
Guoqing Zhao ◽  
...  

2022 ◽  
pp. 71-111
Author(s):  
Xinjun Chen ◽  
Bilin Liu ◽  
Zhou Fang
Keyword(s):  

Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Pablo Mora-Zamacona ◽  
Felipe N. Melo-Barrera ◽  
Víctor H. Cruz-Escalona ◽  
Andrés F. Navia ◽  
Enrique Morales-Bojórquez ◽  
...  

The age and growth rate of the giant electric ray, Narcine entemedor, was estimated using growth bands deposited in the vertebral centra of 245 specimens. Differences in size and age distribution were found between the sexes, a pattern that suggests the annual deposition of band pairs, possibly occurring in April. Multimodel inference and back-calculation were performed to three age data sets of females considering their reproductive cycle and time of capture, among which the von Bertalanffy growth function was found to be the most appropriate (L∞ = 81.87 cm TL, k = 0.17 year−1). Our research supports the idea that age can be determined via biological features such as birth date and growth band periodicity. We concluded that N. entemedor is of a moderate body size, moderate longevity and is a fast-growing elasmobranch species.


Author(s):  
Mauro Lourenco ◽  
Jennifer M. Fitchett ◽  
Stephan Woodborne

2021 ◽  
Vol 51 (4) ◽  
pp. 371-378
Author(s):  
Penprapa Phaeviset ◽  
Pisit Phomikong ◽  
Piyathap Avakul ◽  
Sontaya Koolkalaya ◽  
Wachira Kwangkhang ◽  
...  

The spotted catfish, Arius maculatus (Thunberg, 1792), is a euryhaline fish that is economically important in the Indo-West Pacific. Population dynamics studies and stock assessments of this species have focused on marine stocks, but not those from fresh water. In this study, the age and growth of A. maculatus were, therefore, investigated for the inland stock in Songkhla Lake, Thailand. A total of 213 individuals ranging between 35 and 238 mm TL were used. The length–weight relation indicated positive allometry of this population. Three hard parts (otolith, dorsal- and pectoral-fin spines) were used for aging. The marginal increment ratio confirmed that an annulus was deposited once a year in all three hard parts. All of the samples were aged between 0+ and 6+ years. Verification of age estimates from three readers showed that the otolith was the most suitable part for age estimation. Three growth models (von Bertalanffy, Gompertz, and logistic) were applied in the study. The von Bertalanffy model best described the growth of this fish in Songkhla Lake. The obtained asymptotic length was 290.87 mm TL and the relative growth rate parameter was 0.166 year–1. Our results will be applied as inputs for fish stock assessment models. The obtained growth parameters also can serve as a reference for A. maculatus stocks elsewhere.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12280
Author(s):  
Wilson Xieu ◽  
Levi S. Lewis ◽  
Feng Zhao ◽  
Rachel A. Fichman ◽  
Malte Willmes ◽  
...  

Background The application of otolith-based tools to inform the management and conservation of fishes first requires taxon- and stage-specific validation. The Delta Smelt (Hypomesus transpacificus), a critically endangered estuarine fish that is endemic to the upper San Francisco Estuary (SFE), California, United States, serves as a key indicator species in the SFE; thus, understanding this species’ vital rates and population dynamics is valuable for assessing the overall health of the estuary. Otolith-based tools have been developed and applied across multiple life stages of Delta Smelt to reconstruct age structure, growth, phenology, and migration. However, key methodological assumptions have yet to be validated, thus limiting confidence in otolith-derived metrics that are important for informing major water management decisions in the SFE. Methods Using known-age cultured Delta Smelt and multiple independent otolith analysts, we examined otolith formation, otolith-somatic proportionality, aging accuracy and precision, left-right symmetry, and the effects of image magnification for larval, juvenile, and adult Delta Smelt. Results Overall, otolith size varied linearly with fish size (from 10–60 mm), explaining 99% of the variation in fish length, despite a unique slope for larvae < 10 mm. Otolith-somatic proportionality was similar among wild and cultured specimens. Aging precision among independent analysts was 98% and aging accuracy relative to known ages was 96%, with age estimates exhibiting negligible differences among left and right otoliths. Though error generally increased with age, percent error decreased from 0–30 days-post-hatch, with precision remaining relatively high (≥ 95%) thereafter. Increased magnification (400×) further improved aging accuracy for the oldest, slowest-growing individuals. Together, these results indicate that otolith-based techniques provide reliable age and growth reconstructions for larval, juvenile, and adult Delta Smelt. Such experimental assessments across multiple developmental stages are key steps toward assessing confidence in otolith-derived metrics that are often used to assess the dynamics of wild fish populations.


Sign in / Sign up

Export Citation Format

Share Document