The Fundamental Group of the Von Neumann Algebra of a Free Group with Infinitely Many Generators is ℝ + \{0}

1992 ◽  
Vol 5 (3) ◽  
pp. 517 ◽  
Author(s):  
Florin Radulescu
2001 ◽  
Vol 03 (01) ◽  
pp. 15-85 ◽  
Author(s):  
DAN BURGHELEA ◽  
LEONID FRIEDLANDER ◽  
THOMAS KAPPELER

This paper achieves, among other things, the following: • It frees the main result of [9] from the hypothesis of determinant class and extends this result from unitary to arbitrary representations. • It extends (and at the same times provides a new proof of) the main result of Bismut and Zhang [3] from finite dimensional representations of Γ to representations on an [Formula: see text]-Hilbert module of finite type ([Formula: see text] a finite von Neumann algebra). The result of [3] corresponds to [Formula: see text]. • It provides interesting real valued functions on the space of representations of the fundamental group Γ of a closed manifold M. These functions might be a useful source of topological and geometric invariants of M. These objectives are achieved with the help of the relative torsion ℛ, first introduced by Carey, Mathai and Mishchenko [12] in special cases. The main result of this paper calculates explicitly this relative torsion (cf. Theorem 1.1).


2014 ◽  
Vol 25 (11) ◽  
pp. 1450107 ◽  
Author(s):  
Erik Christensen ◽  
Liguang Wang

Let [Formula: see text] be a von Neumann algebra of type II1 which is also a complemented subspace of [Formula: see text]. We establish an algebraic criterion, which ensures that [Formula: see text] is an injective von Neumann algebra. As a corollary we show that if [Formula: see text] is a complemented factor of type II1 on a Hilbert space [Formula: see text], then [Formula: see text] is injective if its fundamental group is nontrivial.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


1981 ◽  
Vol 33 (4) ◽  
pp. 587-591 ◽  
Author(s):  
Hideki Kosaki

Author(s):  
B. V. RAJARAMA BHAT ◽  
R. SRINIVASAN

B. Tsirelson constructed an uncountable family of type III product systems of Hilbert spaces through the theory of Gaussian spaces, measure type spaces and "slightly colored noises", using techniques from probability theory. Here we take a purely functional analytic approach and try to have a better understanding of Tsireleson's construction and his examples. We prove an extension of Shale's theorem connecting symplectic group and Weyl representation. We show that the "Shale map" respects compositions (this settles an old conjecture of K. R. Parthasarathy8). Using this we associate a product system to a sum system. This construction includes the exponential product system of Arveson, as a trivial case, and the type III examples of Tsirelson. By associating a von Neumann algebra to every "elementary set" in [0, 1], in a much simpler and direct way, we arrive at the invariants of the product system introduced by Tsirelson, given in terms of the sum system. Then we introduce a notion of divisibility for a sum system, and prove that the examples of Tsirelson are divisible. It is shown that only type I and type III product systems arise out of divisible sum systems. Finally, we give a sufficient condition for a divisible sum system to give rise to a unitless (type III) product system.


Sign in / Sign up

Export Citation Format

Share Document