Compensation and Regrowth in Ragwort (Senecio Jacobaea) Attacked by Cinnabar Moth (Tyria Jacobaeae)

1983 ◽  
Vol 71 (3) ◽  
pp. 829 ◽  
Author(s):  
Zahirul Islam ◽  
M. J. Crawley
1975 ◽  
Vol 107 (9) ◽  
pp. 913-917 ◽  
Author(s):  
P. Harris ◽  
A. T. S. Wilkinson ◽  
M. E. Neary ◽  
L. S. Thompson ◽  
D. Finnamore

AbstractThe cinnabar moth, Tyria jacobaeae L., was established in the Atlantic provinces and British Columbia for the control of tansy ragwort. Establishment was difficult to obtain with imported stock: only two of 14 colonies survived, one on each coast. The rate of survival in these colonies increased with succeeding generations, and with stock from the regional colony eight of nine releases became established in Nova Scotia. Most of the established colonies increased until the ragwort was defoliated.


Oikos ◽  
1989 ◽  
Vol 54 (3) ◽  
pp. 337 ◽  
Author(s):  
Ed van der Meijden ◽  
Agnes M. van Zoelen ◽  
Leo L. Soldaat

2011 ◽  
Vol 4 (3) ◽  
pp. 332-340 ◽  
Author(s):  
Kimberly K. Crider

AbstractQuantification of interference with biological control agents can provide support for anecdotal claims of success or failure of agent establishment and efficacy. This study was initiated because of observed predation of cinnabar moth larvae by carpenter ants when releasing larvae for the control of tansy ragwort, an invasive plant in Montana. Biotic and abiotic factors were compared among three sites with historically variable moth population establishment. Two experiments were developed to (1) observe and document insect activity, predation, or disappearance on tansy ragwort stems either protected or accessible to ants; and (2) quantify the effects of ant exclusion on herbivory of tansy ragwort. Site comparisons indicated that ant colony density was highest at the driest of three sites, and, interestingly, no ant colonies were detected at the site with higher observed numbers of moth larvae and adults and lower densities of tansy ragwort. Available substrate (logs and stumps) for ant colonization did not differ between the three sites. In the ant exclusion experiments, a larger number of larvae were missing on plants accessible to ants (63%) compared with plants where ants were excluded (39%) after 36 h. Direct observation of predation of larvae by carpenter ants accounted for 9% of missing larvae on stems accessible to ants. Larvae were able to consume 81% of original flowers or buds on ant-excluded stems, compared with 18% consumption on ant-accessible stems, suggesting that ant predation could limit the efficacy of cinnabar moth larvae. These results provide one of many possible explanations for the anecdotal observations of large, persistent populations of cinnabar moths in moist areas. This work emphasizes the importance of post-release observation and monitoring to detect and, ideally, quantify factors to support anecdotal perceptions regarding the fate and subsequent efficacy of insect biological-control agents.


1990 ◽  
Vol 45 (11-12) ◽  
pp. 1185-1192 ◽  
Author(s):  
Adelheid Ehmke ◽  
Ludger Witte ◽  
Andreas Biller ◽  
Thomas Hartmann

Larvae of the arctiid moth Tyria jacobaeae reared on Senecio jacobaea or S. vulgaris take up and store pyrrolizidine alkaloids (PAs) from their host plants. Individual PAs are taken up without preference. The PA patterns found in the insect bodies correspond to the PA composi­tion of their host plants. Like plants the insects store PAs as N-oxides, and larvae as well as pupae are specifically able to N -oxidize any tertiary PA. Callimorphine (O9-(2-methyl-2-acetoxybutanoyl)-retronecine), an insect PA well known from several arctiids, was found in pupae and imagines of Tyria which as larvae had been fed on S. jacobaea. It is accompanied by small amounts of its isomer O7-(2-methyl-2-acetoxybutanoyl)-retronecine named isocallimor-phine. The callimorphines may well account for 45% of total PAs found in the insect. Only small amounts of callimorphine were detected in pupae of Tyria which as larvae had been fed on S. vulgaris. [14C]Callimorphine N -oxide was isolated and identified from Tyria pupae which as larvae received [14C]retronecine. It is suggested that Tyria is able to esterify retronecine, derived from hydrolysis of ingested plant PAs with a necic acid produced by the insect. During metamorphosis the formation of callimorphine is restricted to the early stage of pupa­tion.


Sign in / Sign up

Export Citation Format

Share Document