Lennart Åqvist. Results concerning some modal systems that contain S2. The journal of symbolic logic, vol. 29 (1964), pp. 79–87. - E. J. Lemmon. Some results on finite axiomatlzability in modal logic. Notre Dame journal of formal logic, vol. 6 (1965), pp. 301–308. - E. J. Lemmon. A note on Halldén-incompleteness. Notre Dame journal of formal logic, vol. 7 no. 4 (for 1966, pub. 1968), pp. 296–300.

1970 ◽  
Vol 34 (4) ◽  
pp. 648-649
Author(s):  
M. J. Cresswell
1938 ◽  
Vol 3 (2) ◽  
pp. 77-82 ◽  
Author(s):  
C. West Churchman

In Oskar Becker's Zur Logik der Modalitäten four systems of modal logic are considered. Two of these are mentioned in Appendix II of Lewis and Langford's Symbolic logic. The first system is based on A1–8 plus the postulate,From A7: ∼◊p⊰∼p we can prove the converse of C11 by writing ∼◊p for p, and hence deriveThe addition of this postulate to A1–8, as Becker points out, allows us to “reduce” all complex modal functions to six, and these six are precisely those which Lewis mentions in his postulates and theorems: p, ∼p, ◊p, ∼◊p, ∼◊∼p, and ◊∼p This reduction is accomplished by showingwhere ◊n means that the modal operator ◊ is repeated n times; e.g., ◊3p = ◊◊◊p. Then it is shown thatBy means of (1), (2), and (3) any complex modal function whatsoever may be reduced to one of the six “simple” modals mentioned above.It might be asked whether this reduction could be carried out still further, i.e., whether two of the six “irreducible” modals could not be equated. But such a reduction would have to be based on the fact that ◊p = p which is inconsistent with the set B1–9 of Lewis and Langford's Symbolic logic and independent of the set A1–8. Hence for neither set would such a reduction be possible.


Author(s):  
Ihor Ohirko ◽  
Zinovii Partyko

The problem of the truth of statements is considered. This study had the goal to develop a logical theory that would allow considering the context (the paradigm) from which would depend on the truth of the statement. For the development of such a theory, called the logic of relativity, the following methods of research are used as abstraction, analysis (traditional), synthesis, deduction, formalisation, axiomatisation, logical method. In order to develop the logic of relativity, it is expedient to use the achievements in the area of situational logic. Under the situation, it is proposed to understand two circumstances (time and space) and a condition that creates a context (paradigm) statement. Specifies the modal values that these three parameters can acquire and examines different types of situations. In order to write statements in the logic of relativity, a form of the statement of statements is proposed in the language of extended symbolic logic. For the theory of the logic of relativity, a set of four axioms is proposed and a series of laws. In particular, it is indicated that the values of the assertions in the logic of relativity are the following five estimates: truth, relative truth, relative is absurd, unclear, uncertain. Some theorems of the logic of relativity are proposed. A number of examples of texts in the natural language are given to interpret the statements of the logic of relativity. It is indicated that the proposed apparatus of the logic of relativity should be regarded as a kind of modal logic. The difference in the logic of relativity from situational logic is that it considers the factor of movement (motion) of statements in time, space and environment conditions, which was not considered by situational logic. The logic of relativity should be used wherever it is necessary to take into account the possibility of moving allegations regarding time, space and environment of conditions. One of the most important conclusions of the study is that in the logic to the standard values of truth (true, probably true, false, uncertain), it is expedient to add another value: relatively true (and accordingly: relatively false).


Author(s):  
Thomas J. McKay

In reasoning we often use words such as ‘necessarily’, ‘possibly’, ‘can’, ‘could’, ‘must’ and so on. For example, if we know that an argument is valid, then we know that it is necessarily true that if the premises are true, then the conclusion is true. Modal logic starts with such modal words and the inferences involving them. The exploration of these inferences has led to a variety of formal systems, and their interpretation is now most often built on the concept of a possible world. Standard non-modal logic shows us how to understand logical words such as ‘not’, ‘and’ and ‘or’, which are truth-functional. The modal concepts are not truth-functional: knowing that p is true (and what ‘necessarily’ means) does not automatically enable one to determine whether ‘Necessarily p’ is true. (‘It is necessary that all people have been people’ is true, but ‘It is necessary that no English monarch was born in Montana’ is false, even though the simpler constituents – ‘All people have been people’ and ‘No English monarch was born in Montana’– are both true.) The study of modal logic has helped in the understanding of many other contexts for sentences that are not truth-functional, such as ‘ought’ (‘It ought to be the case that p’) and ‘believes’ (‘Alice believes that p’); and also in the consideration of the interaction between quantifiers and non-truth-functional contexts. In fact, much work in modern semantics has benefited from the extension of modal semantics introduced by Richard Montague in beginning the development of a systematic semantics for natural language. The framework of possible worlds developed for modal logic has been fruitful in the analysis of many concepts. For example, by introducing the concept of relative possibility, Kripke showed how to model a variety of modal systems: a proposition is necessarily true at a possible world w if and only if it is true at every world that is possible relative to w. To achieve a better analysis of statements of ability, Mark Brown adapted the framework by modelling actions with sets of possible outcomes. John has the ability to hit the bull’s-eye reliably if there is some action of John’s such that every possible outcome of that action includes John’s hitting the bull’s-eye. Modal logic and its semantics also raise many puzzles. What makes a modal claim true? How do we tell what is possible and what is necessary? Are there any possible things that do not exist (and what could that mean anyway)? Does the use of modal logic involve a commitment to essentialism? How can an individual exist in many different possible worlds?


Author(s):  
R. Rodrigo Soberano

The argument (d) ("All arguments with true premises and false conclusions are invalid.") is an argument with true premises and false conclusion. Therefore "(d) is invalid" seems to be formally valid. Thus presumably formal logic has to admit it as valid. But then formal logic finds itself in a bind. For the above argument is problematic and even paradoxical since it involves an internal logical contradiction. The paradox, aptly termed "Stove's paradox," is fully realized by demonstrating with the help of symbolic logic the contradiction within the argument. Then as the main part of this essays shows, the paradox is attacked by exposing the paradox's genesis. It is shown that by appeal to some not so obvious logical considerations regarding sound linguistic construction and usage, the above argument could not have been legitimately construction. For its construction must have involved either equivocation or hiatus of meaningfulness in the use of the symbol (d).


Sign in / Sign up

Export Citation Format

Share Document