On finite and infinite modal systems

1938 ◽  
Vol 3 (2) ◽  
pp. 77-82 ◽  
Author(s):  
C. West Churchman

In Oskar Becker's Zur Logik der Modalitäten four systems of modal logic are considered. Two of these are mentioned in Appendix II of Lewis and Langford's Symbolic logic. The first system is based on A1–8 plus the postulate,From A7: ∼◊p⊰∼p we can prove the converse of C11 by writing ∼◊p for p, and hence deriveThe addition of this postulate to A1–8, as Becker points out, allows us to “reduce” all complex modal functions to six, and these six are precisely those which Lewis mentions in his postulates and theorems: p, ∼p, ◊p, ∼◊p, ∼◊∼p, and ◊∼p This reduction is accomplished by showingwhere ◊n means that the modal operator ◊ is repeated n times; e.g., ◊3p = ◊◊◊p. Then it is shown thatBy means of (1), (2), and (3) any complex modal function whatsoever may be reduced to one of the six “simple” modals mentioned above.It might be asked whether this reduction could be carried out still further, i.e., whether two of the six “irreducible” modals could not be equated. But such a reduction would have to be based on the fact that ◊p = p which is inconsistent with the set B1–9 of Lewis and Langford's Symbolic logic and independent of the set A1–8. Hence for neither set would such a reduction be possible.

1957 ◽  
Vol 22 (2) ◽  
pp. 176-186 ◽  
Author(s):  
E. J. Lemmon

The main aims of this paper are firstly to present new and simpler postulate sets for certain well-known systems of modal logic, and secondly, in the light of these results, to suggest some new or newly formulated calculi, capable of interpretation as systems of epistemic or deontic modalities. The symbolism throughout is that of [9] (see especially Part III, Chapter I). In what follows, by a Lewis modal system is meant a system which (i) contains the full classical propositional calculus, (ii) is contained in the Lewis system S5, (iii) admits of the substitutability of tautologous equivalents, (iv) possesses as theses the four formulae:We shall also say that a system Σ1 is stricter than a system Σ2, if both are Lewis modal systems and Σ1 is contained in Σ2 but Σ2 is not contained in Σ1; and we shall call Σ1absolutely strict, if it possesses an infinity of irreducible modalities. Thus, the five systems of Lewis in [5], S1, S2, S3, S4, and S5, are all Lewis modal systems by this definition; they are in an order of decreasing strictness from S1 to S5; and S1 and S2 alone are absolutely strict.


1982 ◽  
Vol 47 (1) ◽  
pp. 191-196 ◽  
Author(s):  
George Boolos

Let ‘ϕ’, ‘χ’, and ‘ψ’ be variables ranging over functions from the sentence letters P0, P1, … Pn, … of (propositional) modal logic to sentences of P(eano) Arithmetic), and for each sentence A of modal logic, inductively define Aϕ by[and similarly for other nonmodal propositional connectives]; andwhere Bew(x) is the standard provability predicate for PA and ⌈F⌉ is the PA numeral for the Gödel number of the formula F of PA. Then for any ϕ, (−□⊥)ϕ = −Bew(⌈⊥⌉), which is the consistency assertion for PA; a sentence S is undecidable in PA iff both and , where ϕ(p0) = S. If ψ(p0) is the undecidable sentence constructed by Gödel, then ⊬PA (−□⊥→ −□p0 & − □ − p0)ψ and ⊢PA(P0 ↔ −□⊥)ψ. However, if ψ(p0) is the undecidable sentence constructed by Rosser, then the situation is the other way around: ⊬PA(P0 ↔ −□⊥)ψ and ⊢PA (−□⊥→ −□−p0 & −□−p0)ψ. We call a sentence S of PA extremely undecidable if for all modal sentences A containing no sentence letter other than p0, if for some ψ, ⊬PAAψ, then ⊬PAAϕ, where ϕ(p0) = S. (So, roughly speaking, a sentence is extremely undecidable if it can be proved to have only those modal-logically characterizable properties that every sentence can be proved to have.) Thus extremely undecidable sentences are undecidable, but neither the Godel nor the Rosser sentence is extremely undecidable. It will follow at once from the main theorem of this paper that there are infinitely many inequivalent extremely undecidable sentences.


1972 ◽  
Vol 37 (4) ◽  
pp. 711-715 ◽  
Author(s):  
Krister Segerberg

Let ⊥, →, and □ be primitive, and let us have a countable supply of propositional letters. By a (modal) logic we understand a proper subset of the set of all formulas containing every tautology and being closed under modus ponens and substitution. A logic is regular if it contains every instance of □A ∧ □B ↔ □(A ∧ B) and is closed under the ruleA regular logic is normal if it contains □⊤. The smallest regular logic we denote by C (the same as Lemmon's C2), the smallest normal one by K. If L and L' are logics and L ⊆ L′, then L is a sublogic of L', and L' is an extension of L; properly so if L ≠ L'. A logic is quasi-regular (respectively, quasi-normal) if it is an extension of C (respectively, K).A logic is Post complete if it has no proper extension. The Post number, denoted by p(L), is the number of Post complete extensions of L. Thanks to Lindenbaum, we know thatThere is an obvious upper bound, too:Furthermore,.


Author(s):  
Ihor Ohirko ◽  
Zinovii Partyko

The problem of the truth of statements is considered. This study had the goal to develop a logical theory that would allow considering the context (the paradigm) from which would depend on the truth of the statement. For the development of such a theory, called the logic of relativity, the following methods of research are used as abstraction, analysis (traditional), synthesis, deduction, formalisation, axiomatisation, logical method. In order to develop the logic of relativity, it is expedient to use the achievements in the area of situational logic. Under the situation, it is proposed to understand two circumstances (time and space) and a condition that creates a context (paradigm) statement. Specifies the modal values that these three parameters can acquire and examines different types of situations. In order to write statements in the logic of relativity, a form of the statement of statements is proposed in the language of extended symbolic logic. For the theory of the logic of relativity, a set of four axioms is proposed and a series of laws. In particular, it is indicated that the values of the assertions in the logic of relativity are the following five estimates: truth, relative truth, relative is absurd, unclear, uncertain. Some theorems of the logic of relativity are proposed. A number of examples of texts in the natural language are given to interpret the statements of the logic of relativity. It is indicated that the proposed apparatus of the logic of relativity should be regarded as a kind of modal logic. The difference in the logic of relativity from situational logic is that it considers the factor of movement (motion) of statements in time, space and environment conditions, which was not considered by situational logic. The logic of relativity should be used wherever it is necessary to take into account the possibility of moving allegations regarding time, space and environment of conditions. One of the most important conclusions of the study is that in the logic to the standard values of truth (true, probably true, false, uncertain), it is expedient to add another value: relatively true (and accordingly: relatively false).


Author(s):  
Thomas J. McKay

In reasoning we often use words such as ‘necessarily’, ‘possibly’, ‘can’, ‘could’, ‘must’ and so on. For example, if we know that an argument is valid, then we know that it is necessarily true that if the premises are true, then the conclusion is true. Modal logic starts with such modal words and the inferences involving them. The exploration of these inferences has led to a variety of formal systems, and their interpretation is now most often built on the concept of a possible world. Standard non-modal logic shows us how to understand logical words such as ‘not’, ‘and’ and ‘or’, which are truth-functional. The modal concepts are not truth-functional: knowing that p is true (and what ‘necessarily’ means) does not automatically enable one to determine whether ‘Necessarily p’ is true. (‘It is necessary that all people have been people’ is true, but ‘It is necessary that no English monarch was born in Montana’ is false, even though the simpler constituents – ‘All people have been people’ and ‘No English monarch was born in Montana’– are both true.) The study of modal logic has helped in the understanding of many other contexts for sentences that are not truth-functional, such as ‘ought’ (‘It ought to be the case that p’) and ‘believes’ (‘Alice believes that p’); and also in the consideration of the interaction between quantifiers and non-truth-functional contexts. In fact, much work in modern semantics has benefited from the extension of modal semantics introduced by Richard Montague in beginning the development of a systematic semantics for natural language. The framework of possible worlds developed for modal logic has been fruitful in the analysis of many concepts. For example, by introducing the concept of relative possibility, Kripke showed how to model a variety of modal systems: a proposition is necessarily true at a possible world w if and only if it is true at every world that is possible relative to w. To achieve a better analysis of statements of ability, Mark Brown adapted the framework by modelling actions with sets of possible outcomes. John has the ability to hit the bull’s-eye reliably if there is some action of John’s such that every possible outcome of that action includes John’s hitting the bull’s-eye. Modal logic and its semantics also raise many puzzles. What makes a modal claim true? How do we tell what is possible and what is necessary? Are there any possible things that do not exist (and what could that mean anyway)? Does the use of modal logic involve a commitment to essentialism? How can an individual exist in many different possible worlds?


2019 ◽  
Vol 13 (4) ◽  
pp. 720-747
Author(s):  
SERGEY DROBYSHEVICH ◽  
HEINRICH WANSING

AbstractWe present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing (2010) and Odintsov & Wansing (2017), as well as the modal logic KN4 with strong implication introduced in Goble (2006). In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system and a decidable sequent calculus for which a contraction elimination and a cut elimination result are shown.


Sign in / Sign up

Export Citation Format

Share Document